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Horse Racing

Steady
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Who Should Be Here?

“My EM converges to garbage!”

“I want to integrate domain knowledge.”

“My independence assumptions
don't factor nicely!”

‘“Bayesian techniques are
worthless...
too hard...
too slow...”

c
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Tutorial Goals

Understand when to be Bayesian

Know the natural prior distributions

Draw complex graphical models

Implement a Gibbs sampler for LDA

Read NIPS/UAl/etc. papers

(-a
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See also: DM06
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Empirical Motivation
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See also: DM06
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Model for Q-F Summarization

»  Suppose a document D is relevant to two queries, Q1 and Q2

> Mark each sentence Wlth the Iraq’s National Assembly approveda | (0.5, 0.2, 0.2, 0.1)
de gree to which 1t 1s about: list of Cabinet members for a
transitional government Thursday,
> Q 1 three months after national elections.
> Q2 Three ministries — Defense, Oil and (0.1,0.6,0.1,0.1)
Electricity — were filled with
> D, but not Ql nor Q2 temporary appointments because of a
. last minute failure to reach a
> General Enghsh compromise.
> NOW, mark each word in that Prime minister Ibrahim al-Jaafari (0.2,0.2,0.3,0.3)

assumed his post with the creation of
his government

sentence with an absolute
judgment about where it came from ol o T o

> Sentences which are more like Ql are represents the end of a major political

more likely to have words from Q1 impasse In the country.

. . On Wednesday, al-Jaafari told anews | (0.1, 0.2, 0.5, 0.1)
> GGHGI’ 8.1 EHgllSh WOr dS are hkely to be conference that he had submitted his

consistent across the whole corpus proposal Cabinet to President Jalal

. o . Talabani, who had to approve the
> Document- Sp GCIflC wor dS are hkely to names before the transitional National

be consistent across the whole document | Assembly voted on them.

(0.4,04,0.1,0.1)

> Query—specific words are llkely to be Al-Jaafari’s announcement came a (0.2,04, 0.1, 0.3)
consistent across all documents relevant | short time after gunment shot and

. killed an assembly member on her
toa gliven query doorsep in Baghdad...
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Tutorial Outline

> Introduction to the Bayesian Paradigm

» Background Material
>  Graphical Models
»  Maximum Likelihood

>  Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions

> Summing » Laplace Approximation

> Monte Carlo »  Variational Approximation

»  Markov Chain Monte Carlo » Message Passing...

> Survey of Popular Models
> Pointers to Literature

» Conclusions
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A Brief Refresher

Distributions

Binomial Binary l Bin(x| N,6) o« 6" (1—0)N"
g 1

f dx p(x)f(x) X is continuous

\X

Probability Calculus:

p<x1:N>:1;[ p(xn|x1:n_1) plalb)= <GLIZ[<9
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The Bayesian Paradigm

> Every statistical problem has data and parameters

» Find a probability distribution of the parameters given the
data using Bayes' Rule:

Likelihood
~ Posterior

P(params)P(data| params)

P(params|data) =

P( da ta)
> Use the posterior to: 5
> Predict unseen data (machine learning)
> Reach scientific conclusions (statistics)
»  Make optimal decisions (Bayesian decision theory)
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Models, Parameters and Data

» Model = Our explanation of the world (data)

» Examples: maximum entropy models, IBM model 1, trigram LM

» Parameters = All unknown aspects of the model

»  Examples: “lambda” parameters, T-table, p(ate | the man)

» Data = All observed variables

> Inference problems:
>  Estimate parameters (or their distribution)
> Estimate missing data (prediction)

> Find a good model

Slide 10 bayes.hal3.name é‘iﬁ Bayesian Techniques for HLT



Hal'Daumé Ill (me@hal3.name)

What is a Good Model?

> We can consider models by looking at the probability that
they generate our data set (the marginal likelihood of the

data):
A
~ Model 3 | Current data set |
3 :
3 )
z :
= + Model 2
+ 1
& .
Z :
oY .

all possible data sets

See also: MK[28.1]
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Tutorial Outline

> Introduction to the Bayesian Paradigm

» Background Material
>  Graphical Models
»  Maximum Likelihood

>  Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions

> Summing » Laplace Approximation

> Monte Carlo »  Variational Approximation

»  Markov Chain Monte Carlo » Message Passing...

> Survey of Popular Models
> Pointers to Literature

» Conclusions
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Graphical Models

» Convenient notation for representing probability distributions
and conditional independence assumptions

@ A observed random variable

@ A unobserved/hidden random variable
X A observed/known parameter
X A unobserved/unknown parameter

A submodel replicated N times

=

= N

=

B

3 -— An 1ndication of conditional dependence
S
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See also: Murphy
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Example 1: Naive Bayes

Slide 14

Feature parameters

X [/ 6Y ~ Binomial(X /é&Y)
Y | 7 ~ Multinomial(m)

Data vector * For each example n:

* Choose a class Y by:
D YZY| TT) o Tl'y

Class label * For each feature f:
* Choose X by:

p(X;] QY) C 911‘/

Class 'prior' probability
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Example 1: Naive Bayes

0 p(D 6, m)
=[1pty,ImILp(x, 1y,.0)
n /

Y
. J\L J
Y Y

mm  iy,=1 6yp

1_
@ :HTryn(l—W) ynHHQanV
i, f y Sy

-t 1ify,=0 if X5 = 1

Of, = probability that feature f takes

value v 1f the classi1s y

See also: Murphy
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Example 2: Maximum Entropy

Data vector * For each example n:

* Choose a class Y by:
p(Y=y | X,0) «
Class label AP [Zf X905 ]

Feature parameters
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Example 3: Hidden Markov Models

€ 9 X
b
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Example for Summarization

» Consider a stupid summarization model:
» Each word in a document is drawn independently

> Each word is draw either from a general English model, or a document
specific model

>  We don't know which words are drawn from which

plw | m, B B") =
L2 pie

Indicator
variable
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Fun with Graphical Models

> Easy to propose extensions to the model: add sentences!
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Fun with Graphical Models

» Add queries!
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Tutorial Outline

> Introduction to the Bayesian Paradigm

» Background Material
>  Graphical Models
» Maximum Likelihood

>  Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions

> Summing » Laplace Approximation

> Monte Carlo »  Variational Approximation

»  Markov Chain Monte Carlo » Message Passing...

> Survey of Popular Models
> Pointers to Literature

» Conclusions
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Maximum Likelihood Estimators (MLE)

» Take a parameterized model and some data

» Find the parameters that maximize the likelihood
of that data (1.e., the 'probability’ of the parameters
given the data):

N
L(Q,T( | Xl:N’ YlN):H

n=1 k=1 9
F .
H(@?H X, r 1_9}/—11)1 X,
=1 q,

ZZ Y, Jogm,+(1-Y,)log(1—m,))
—I—ZZ anlong—I—(l—an)log(l—Q;")) a
nof

1-X,
k
1-0;

81_22

n:Y =k f

ol
=2

n

Z Y, 1-Y,
| T, 11—,

TT
f

See also: Was
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Tutorial Outline

> Introduction to the Bayesian Paradigm

» Background Material
>  Graphical Models
»  Maximum Likelihood

> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions

> Summing » Laplace Approximation

> Monte Carlo »  Variational Approximation

»  Markov Chain Monte Carlo » Message Passing...

> Survey of Popular Models
> Pointers to Literature

» Conclusions
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See also: Was, MK[22]
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MLE with hidden variables

» Consider a stupid summarization model:

>
>

Slide 24

Each word in a document is drawn independently

Each word is draw either from a general English model, or a document
specific model

We don't know which words are drawn from which

plw [ 6%, B)=L L1 2 p(e,ulm) p(wlB™)= plwif)

Compute log likelihood:
<7T ﬁ|W Z Z 10g Z ﬁG

Uh oh! Logs can't go inside sums!

Indicator
variable
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See also: Was[9.13], Murphy, MK[22]
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Expectation Maximization

>  We would like to move the log inside the sum, but can we?

> Jensen's Inequality to the rescue:

logp(x|0) = logfzdzp(x,z| 0)

_ p(X,z|6)
— logfzdz q(z) 72

p(X,z|0)

q(2)
= fq )logp(x,z|6)-]  q(z)logql(z)
= E, ,logp(x,z|0)|-E, ,logq(z)

> f dz q(z)log

» For any distribution Q (with the same support)
» How should we choose O?
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See also: Was[9.13], Murphy, MK[22]
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Expectation Maximization

> If weset qg(z2)
equality:

fz dz g(z)log

p(x,z|0)

q(z)

= p(z| x,0) then the lower bound becomes an

|, dz plx| 2,0/l 222
| (le9) p(x|0)
,dz p(x| z, )log (X1 2,0)
| dz p(x]| z,0)log p(x] 0)
logp(x]0) f dz p(x|z,0)
log p(x|0)

> So, when computing E,__{log p(x,z|0)}, the expectation
should be taken with respect to the true posterior

Slide 26
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EM in Practice

>

Slide 27

Recall, we wanted to estimate parameters for:
w780 = L2 plzulm) pwls®)™ p(wiB,)
= 11 J_J_EZ,,,,,W{ (WIB®)™ p(wiBy)" *)

m n

So we replace the hidden variables with their expectations:

B | w ZZE Za)10g D(W|B°)+(1 - E|z,,})log p( wiB)

All we need to do 1s calculate the expectations:

E(z,,} « p(z,,=1 | m)p(w | %)

mn

And now the computation proceeds as in the no-hidden-
variable setting
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EM Summed Up

> Initialize parameters however you desire

> Repeat:

> E-STEP:
Compute expectations of hidden variables under
the current parameter settings

> M-STEP:
Optimize parameters given those expectation

> This procedure 1s guaranteed to:
» Converge to a (local) maximum

»  Monotonically increase the incomplete log-likelihood

Slide 28 bayes.hal3.name é‘iﬂ Bayesian Techniques for HLT



EM Graphically

X0

Xl X2
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EM on our simple model

> Suppose we have three words: {A, B, C}
> Document 1 = [A B], Document 2 = [A C]

> Initialized uniformly
> E-step: Ez_ | « pz,=-1| mpw| BC)

mwBY 0.5%1/3
E = = e
{211} T(ﬁg"‘(l_ﬂ-)ﬁ?A 05*1/3+05*1/3 05

E|z,,} = E|z,] = E(z,} = 0.5

> M-step:
8, = ~|Ele )+ Elel|= > 65 =Z[EBleu)]=F 87 = Z[Ele)] =7
n=S1-El)=3  Bh=Z[1-Elz) =3 Bl=0
n=liEl)=L = 8% =7 [1-E gl = 5

El{z,J+E (2] 1
E{Z11}+E{Zz1}+E{Z12}+E{Z22} 2
bayes.hal3.name @ﬁ Bayesian Techniques for HLT
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EM on our simple model

> Suppose we have three words: {A, B, C}
> Document 1 = [A B], Document 2 = [A C]
> Initialized uniformly log B(A)

Incomplete log likelihood

~ log BRA)

\

-7 ] ] ] ]
1 2 3 10
Complete log 11kehh00d
Slide 31 @ Bayesian Techniques for HLT




See also: MK[3], Ber[3.1, 2.3, 4.8]
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Problems with Maximum Likelihood

Powerful model = Worthless results
(due to overfitting...)

Theoretically unjustified

(some would argue...)

Computationally Expensive
(all that cross-validation...)

Background knowledge is 0/1

likelihood

parameters

(‘1
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Tutorial Outline

> Introduction to the Bayesian Paradigm

» Background Material
>  Graphical Models
»  Maximum Likelihood

>  Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions

> Summing » Laplace Approximation

> Monte Carlo »  Variational Approximation

»  Markov Chain Monte Carlo » Message Passing...

> Survey of Popular Models
Pointers to Literature

» Conclusions
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See also: Ber[3.1-6, 4.7], MK[22,43], , Was[11.1]
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What is a Prior?

» Recall Bayes' Rule:

Likelithood
~ Posterior

P(D|0)
f@ d@P (0) P(D|0)

P(0| D) =

> A prior 1s a specification of our beliefs about the values
parameters can take, before seeing any data
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How Does the Posterior Behave?

Take sequence of data xq, ..., xN...

Slide 35

p(0)

p(0]x,)

p(0]x, x,)

pO]x, )

just the prior
p(0)p(x,|0)

Jdop(o)p(x,|o)
p(0]x,)p(x,]0)
Jdepolx)p(x,|6)

plolx, « )plx,|0)

Jdopo|x,. ,_,)p(x,0)
p@)]1p(x |0)

[aop@©)]]p(x |6)
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Binomial Example

5 5 5

41 al % 4 * 4\ *
3 3 3 3
2 2 2 2

1 1 1/_\ 1}
0 0 0 - 0

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
5 5 5 5
4l * a4l * a4l * " S
3 3 3 3
2 2 2 2
1 1 1 1
0 0 - 0 0

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
5 5 5 5
4 * al % a4l * a4l *
3 3 3 3
2 2 2 2
1} 1 1 1}
0 - 0 - 0 - 0 -

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
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See also: Ber[3.1-6, 4.7], MK[22,48], , Was[11.1]
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Specifying Priors

> A prior 1s a map m that:

>
>

Assigns to every setting of parameters a real value

Integrates to 1 over the parameter space

» Such a beast can be difficult to describe! Tools:

>
>

Slide 37

When the parameters are discrete, we can set them by hand

Otherwise, we will often choose a parametric prior
m(0)=m(0|x) and deal with the hyper-parameters

Or choose a set of priors and integrate over them (robust
Bayes)

bayes.hal3.name é‘iﬁ Bayesian Techniques for HLT



Hal'Daumé Ill (me@hal3.name)
Empirical Bayes

> Specity a class of priors (typically a functional form):

I={m:m(0)=g(0]|a)|

> Estimate the prior by maximizing the marginal likelithood:

wo= 9T plx|m)
el
_Imax
= |, dom(e|«)p(x]e6)
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See also: Ber[4.2.2], MK[23]
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Conjugate (convenient) Priors

p(@]] p(x,l0)
~Jaepo)[1p(x,10)

> Given a distribution p(x|0)

> Recall: p(0]x,.,)

» And a prior 1T(9|0()

» The prior 1s conjugate 1f:

(0 |x)p(x|0)
J,F“0)p(x]0)

p(0]a, x)= = (0| &)
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Summary of Distributions

Distribution Domain Picture

Parametric Form

Binomial Binary l
-
Multinomial K classes I
1(...-
Beta [0,1] | /\
Gamma [0,0) /\
. , N\
Dirichlet Simplex \
Gaussian Reals /\
Slide 42

Bin(x|N,6) o« 0" (1-6)""
Mult(x|0) o [ ] 0

Beta(0| o, B) c 0° ' (1-0)7!
Gam(x|a,b) « x * 'exp(—bx)
Dir(@|a)c] ] 637"

u)2/202)

Nor(x|u,o?) exp((X—

bayes.hal3.name é‘iﬁ Bayesian Techniques for HLT
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Binomial and Beta Distributions

» Binomial distribution models flips of coins (domain={0,1}):

Probability that a coin, bias 0, flipped N times will come up x heads

Parameters: INEIN", 0€[0,1]
Distribution: Bin(x|N,0) = (-])\{7)9” (1—0)¥ "

v V VY V

Moments: ;=N6, var=N6(1—-6+ NOo)
> Beta distribution models nothing (we care about) (domain=[0,1]):

> Parameters: xeR*, BeR”

> Distribution: Beta(0|«,B) = lf(f;;;:f;) g~ ! (1 _9>3_1
> Moments: ,=—>—  vyar= xp
ot p (x+B8)° (x+8+1)

» Beta 1s conjugate to binomial:
> Posterior parameters: & = x+X, ,8 =B+ N—x

»  Marginal distribution:
I'(oe+B) (N\T (x+x)I'(B+N—Xx)

I'e)I'(B)| x ['(ax+B+N)
Slide 43 bayes.hal3.name é‘iﬁ Bayesian Techniques for HLT
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Beta Distribution Examples
I'(x+p)

Beta(0|«,B) = 0t (1-0)"
()T (B)
40 20 10
lf). 30 15 ||
C”D 20 Nl 1w .-'I 5 I||
e 10 III“‘-\_______ d_d___,/l 5_______;“__,/ B /-"I
F 2 | a3

15 | 15 '
e | oz
Il 1ofl 1 /
S \ 0.1
5 . 05 /

Q Q Q —

0 0.5 1 0 0.5 1 0 05 1
€10
10 03 2
| 02
Tl[ 5| 1 -
e 0.1
N,
S _
0 = 0 0
0 0.5 1 0 0.5 1 Q 05 1

B=0.5 B=1 =4

(-a
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Multinomial Distribution

> A distribution over counts of K>1 discrete events (words)
> Domain: (X ..., Xg) € IN®

» Parameters: <91’-.-,9K> EAr=1{0,.¢: 0,20, 0,=1)

(Z Xk-l-l)

[Lox

» Distribution: Mult(x|0)

H I'ix,+1)
> Moments: (O1,---.O0g) € Ag= {0,.x :0,=0, 2. 0,=1]
(0,0,N)
(N,0,0) (O,N,0)
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Dirichlet Distribution

> A distribution over a probability simplex

> Domain: (0, ...,0¢) € &

> Parameters: {(&,,...,ap€(RY*, &= «,

PR I'(&) &, —
> Distribution: Dir(0|&)= H I' (o )erk 1
k k

o< o (—ox )
> Moments: u,=—, var,=—= k
X

(0,0,N)

(0,0,N)

(N,0,0) . (O,N,0) (N,0,0) (O,N,0)
[1,1,2) [5.5.10]
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Multinomial/Dirichlet Pair

(Z Xk-l—l)
HF (x,+1)

.. C e L - I'(6 o
» Dirichlet distribution: Dir(6|x) = &) 11 % 1

Hr(xk

[ 1ok

» Multinomial distribution: Mult(x|0)

> Posterior hyper-parameters:

(61 G) = (GG Xy o) Ot X i)

» Marginal Distribution:
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Gaussian/Gaussian-Gamma

> Gaussian distribution: Nor(XIu,02)=(2n02)”2exp—?
o
Gaussian prior: Nor(u|m,s’)
. 1 o4 1
Gamma prior: Gam(co | a, b) = 2~ laxp—
P lola D)= 2 ® L
a>0, b>0, domain=R"
> Posterior hyper-parameters:
IP 1p 1 12 1:12/52+Z_X'j/a2
§ = |=+— m = !
s* o 1/s*+ N/o*
-1
a = a+1/2 h = b1+%Z(Xj—X>2)

» Marginal distribution:

p(x|m,s’,a,b)=StuT(m,a,b)

Non-standard

Student's T distribution
Slide 48 bayes.hal3.name é‘iﬁ Bayesian Techniques for HLT
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Gamma Distribution

b u = alb
Gam(x|a,b) = x “ 'exp(—bx) ,
[(a) var = alb
1| 08 03
|
— | 04 ozt
[l o5 "5\ .’\ i';
i 02 a1} |
‘\ | / Ny
/
ol——= 0 \“ = okt =
0 5 10 a 5 10 a 5 10
2 1 06
Cﬁl 2l lf\ o4t [
.Q 1 II 03 | | |
0.5 \ \ 0z |'I \
0 \ 0 \ a fll \\._
0 5 10 0 5 10 0 5 10
4 15 'I 1
3 1 |II ||nlll
Tl[ 2" || o5l I',I
lQ ] |I a5 III || \
ol ol ol
0 5 10 0 5 10 0 5 10
a=1 =2 a=4
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Conjugate Priors in Action

- BLD)

°[ B(3,3)

- B(6,4)

0 0:5
Slide 50
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Recall our summarization model

~ Bin(m

z | m )
gG @ w | z,B ~ Mult(°’ Mult(p®)*

» The problem was that we
don't believe that it's okay
N for mtogotoOor 1

T > Solution?
Put a prior on 7!

>  What's a good prior?
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Bayesianified summarization model

T a,b ~ Beta(a,b)
BC @ Z T ~ Bin(m)
é w | z,B8 ~ Mult(8%)?Mult(gP)?
N
abw 7 s
_ I'(a+ a-1,4 _\b-1

1-Zz

HH Z 7TZmn<1—1T> mn

Conjugacy doesnot ;g z_€(0,1]
help because of - (1-z_)w

z )
the hidden variables H ( [35) ma - mav( [35V) mn’ " mnv

vV
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Interesting Inference Questions

» Predict values of unobserved data:

P(U| D)« [ dn(6)P(D|0)P(U|0)

» Compute data likelihood:
P(D)« [ dr(6)P(D|0)
O

» Maximize marginal likelihood:

P(x|D)x | dn(0|«)P(D]0)

> Estimate posterior:
m(0)P(D]0)
P(O| D)=
(01D) =5
> GENERAL FORM:

F=| dxp(x)f(x)=E

epl

£(x)
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See also: MK[24]
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Integration by Summation

> Remember your 9" grade math:

p()E(x)

F= [ dxp(x) Zp

XER
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BO=— |
e

Summing in our Model

» Simply rewrite the integral as a sum:

| a,b ~ Beta(a,b)
| ~ Bin(m)
| z,B ~ Mult(p®) Mult(p”)'

_ I'(atb) . h-1
p(D|g,a,b) = [, dr 1 r<b>" (1-m)

[T X o (im oo ] (g0 (e

s N F

n z (0,1} 14
100
Y I'(a+Db)
p=1 a-1 . b—-1
T aT (p/100)" " (1-p/100)

HH > (p/100)™(1-p/100)' 7

n z,¢c(01]

| I O A R

v

Slide 57 bayes.hal3.name @ﬁ Bayesian Techniques for HLT



Hal'Daumé Ill (me@hal3.name)

Integration by Summation

> Pros:

> Easy to implement

> Arbitrarily accurate

» (Cons:

> Only works for doubly-
bounded regions

» Intractable for >1 or >2
dimensions

> Difficult to choose
granularity

> Idea: let's choose R differently

Slide 58
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Monte Carlo Integration

» Uniform sampling:

> Let R be a (multi)set of points drawn uniformly at random

p(x)t(x)
Q)
<
=
=
D
N
)
=
R) F= [ dxp(x = plx
? XeR
=
S
Nt}
I
NV
NV
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See also: MK[29], Was[24.2], And03
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Uniform Sampling

> Pros:

>

Can now work in arbitrarily
high dimensions (in theory)

> Choice 1s now size of R, not

the width of windows
: 1
~ Cons: F= [ dxp(x)fix)~ 7 2, px)f(x)

»  Number of samples required *
to get near the mode of a spiky
distribution is huge: R ~ 272

»  True distribution is rarely uniform
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Importance Sampling

> Let R be a set of points drawn from a proposal distribution q

p(x)

See also: MK[29], Was[24.3], And03
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Importance Sampling P(x)

> Pros: p / (OT(x)
> If g can be constructed similar /
to p, then good samples can be had
> Can scale better than uniform d )
sampling (not saying much) Z w, f(x,) p(x,)
> Cons: B~ w, T g(x)
» Very sensitive to choice of ¢
» Hard to evaluate whether it has converged
> Still a lot of samples required:
IS: R~ exp@ US: R~2P72
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Markov Chain Monte Carlo

» Monte Carlo methods suffer because the proposal density
needs to be similar to the true density everywhere

» MCMC methods get around this problem by changing the
proposal density after each sample

» General framework:
» Choose a proposal density ¢g( | x) parameterized by location x
> Initialize state x arbitrarily

» Repeatedly sample by:
> Propose a new state x’ from g(x'| x)
> Either accept or reject this new state

> If accepted, set x = x'

> New problem: samples are no longer independent!

See also: MK[30], Was[24.4], And03
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Metropolis-Hastings Sampling

| Px) glx|x)
" p(x) g(x'| x)

> Accept new states with probability: min

> Only put every N* sample into R

- p(x)

F= [ dxp(x)fix)~ %Z flx)

xeR

See also: MK[30], Was[24.4], And03
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MH in our Model

>

Slide 67

Invent a proposal distribution g

loga’
logb'

o(m’)

I/

Z

mn

N J &0

Hal'Daumé Ill (me@hal3.name)

~ Nor(log(a),1)
~ Nor(log(b),1)
~ Nor(o(m),1)
~ Bin(0.5)

s N F

BO=— |
-

| a,b ~ Beta(a,b)
| ~ Bin(m)
| 2B ~ Mult(°Y Mult(") *

Or, condition on all variables:

loga' ~
logb' ~

o) ~

Nor(log(a),1)
Nor(log(b),1)
Beta(w'|a,b)] | Bin(z,,| "

Bin(z,, | m)p(w,, |z, " B)

mn mn “/

Now we can compute expectations of z easily and use these
for the M-step of EM
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Metropolis-Hastings Sampling

(x)
> Pros: A

> No longer need to specify a
universally good proposal
distribution; only locally good

> Simple proposal distributions
can go far

» (Cons:

» Hard to tell now far to space samples:

> Suppose we use spherical proposals and, then we need at least

N= (o, lo

)2
max min

where sigmas are lengths of the major density in p

>  Auto-correlation to track this:
N-k

; (x,—X)(x;, ,— X)
; (Xj_jf)z
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Gibbs Sampling

> Defined only for multidimensional problems

» Useful when you can take out one variable and explicitly
sample the rest

F= [ dxp(x) ~—2f

XGR
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Gibbs Sampling

> Typically our params are: 0=(0,,...,6,)

» 1If, for each i, we can draw a sample from:

p(o;|0_)=p(6,;/0,,...,0,_,,0,.,,...,0p)

then we can use Gibbs sampling

> In graphical models, only depends on the Markov blanket:
p(o;10_) = p(o, par(0,)) ]I )p(ejlpar(éj))

J:0,€par(6;

_J=pld|a,bpleld)p(fld,c)
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Gibbs in our Model

» Compute conditional probabilities

a,b

-a,b

7T

—Z

mn

~ Beta(m|a,b)

~ Beta(r|a,b)]|] Bin(z,,|n)

~ Bin(z,,|m)p(w

mn

Hal'Daumé Ill (me@hal3.name)

BO=— |
-

| a,b ~ Beta(a,b)
| ~ Bin(m)
| 2B ~ Mult(°Y Mult(") *

s N F

| Zypns B)

> Now we can compute expectations of z easily and use these

Slide 71

for the M-step of EM

> Alternatively, we could propose values for LMs in the sampling
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Gibbs Sampling

> Pros:

> Designed to work in high
dimensional spaces

» Terribly simple to implement
> Automatable

» (Cons:

» Hard to judge convergence, can require many many samples
to get an independent one (often worse than MH)

> Only applicable when conditional distributions are 'nice’

> (Though there are ways around this)
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Laplace (Saddlepoint) Approximation

> ldea: approximate the expectation by a quadratic (Taylor
expansion) and use the normalizing constant from the
resulting Gaussian distribution

pt(x) = g(x)

X0

82

, C=— 8711'19'()()

X=X,

See also: MK[27]
ki
—

S
=
i1
L)
~
L)
{
=t
>
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See also: MK[27]
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Laplace Approximation

» Find a mode xo of the high-dimensional

q(x)

distribution g g(x
> Approximate In g(x) by a Taylor -
expansion around this mode: F~g(x,)V2m/c
Ing(x) ~ lng(fo)_%(jf_fo)TA(jf_fo) CZ—[@zlng(X)/ﬁXZIX:XO
» Compute the matrix A of second derivatives
0 -
i ananlng(X) -z,

> The exponential form 1s a Gaussian distribution; use the
Gaussian normalizing constant:

F= [ ,dxg(x)~ g(x,)

(‘1
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| gl
» Compute second derivatives:

fUdTrZab "1-m)"" 1HHZ7T Zop(w, |z, B) @’@ e

Laplace in our Model

m | a,b ~ Beta(a,b)
z | m ~ Bin(m)
w | z,B ~ Mult(B°F Mult(”)
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Laplace Approximation

q(x)
> Pros:
> Deterministic g(x
> Efficient if A is of a suitable form -
(i.e., diagonal or block-diagonal) F~ g(x,) J2mic

> Can apply transformations to make
quadratic approximation more reasonable

c=—|0*Ing(x)/6 x*|,_,

» (Cons:

>  Poor fit for multimodal distributions

> Often, det A cannot be found efficiently
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See also: MK[33], Wain03, Min03
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Variational Approximation

» Basic 1dea: replace intractable p with tractable ¢
> (Old Problem:

> We cannot come up with a good, single, g to approximate p

> Key Idea:

» Consider a family of distributions Q= [q(- )P €d5]
with 'variational parameters' ¢

» Choose a member g from Q that is closest to p

» New problems:
> How do we choose Q?

» How do we measure 'closeness' between g and p?
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Recall EM and Jensen's Inequality

> Jensen gives us:

logp(x|0) = logfzdzp(x,z| 0)
p(X,z|06)

q(z)
(X,z|0)

q(z)
= | q(2)logp(x,2]0)-] q(z)logq(z)
= E, [logp(x,z|0)|-E, ,(logq(z)

= logfzdz q(z)

> fzdz q(z)logp

~
£(x]0)

>  Where we chose ¢g(z) = p(z| x,0) to turn the inequality into
an equality. But we can also compute:

logp(x|0)=c+KL|q(2)|| p(z|x,0)|

for any choice of g
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Variational EM

» Parameterize g and directly optimize:

log p(x|6)=E,_,{log p(x,z|6)|-E,_ {logq(z)}+KL|q(z|0)| p(z| x,6))

» Iterate:
> V-Step: Compute variational parameters 0 to minimize KL
> E-Step: Compute expectations of hidden variables wrt (@)
>  M-Step: Maximize £ wrt true parameters 6

> Art: inventing g so that this 1s all tractable
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Variational EM in Pictures

pCOt(x) = g(x)

—7
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Variational: Choosing Q

» Mixture model:
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VEM in our Model

> lterate:

> Optimize variational parameters:

I mni }

i aj + Z ﬁmm’

Hom © €XP|E 4w

»  Optimize model parameters:
i )
BV oC Z Trmm’ Wmnv
m,n

a, b ~ generic optimization techniques
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BO=— |
-

| a,b ~ Beta(a,b)
| ~ Bin(m)
| 2B ~ Mult(°Y Mult(") *

s N F
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Variational EM Summed Up

> Steps:

>

Write down conditional likelihood and
choose an approximating distribution
(eg, by factoring everything) with
variational parameters

Iterate between optimizing the VPs
and model parameters

> Pros:
»  Efficient, deterministic, often quite accurate
> Cons:

» Atit's heart, still a mode-based technique

»  Often underestimates the spread of a distribution

»  Approximation is local
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See also: Min05
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Message Passing Algorithms

» Two major choices:

> What approximating distribution should we use?

>  What cost should we minimize?

Power EP
exp family
D, (pllq)

Struct MF Frac BP EP

exp family factorized exp family
KL(q Il p) D, (pllg KL(pllq)
Mean Field Tree Rep BP
factorized factorized factorized
KL(q !l p) Dyo1(pllg) KL(p 1l q)

1

D,(pllg)=——[ dxgp+(1-plg-p'd  f=(1+a)

B(1-B)

KL(pllq) = D, (pllq) KL(ql||p)=D_(pllg)
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See also: DM06
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Empirical Evaluation of Methods

> Query-focused summarization model:

we, ~ Mult(B)

T, ~ Dir(a)

Zpn ~ Mult(m,,)

Wom ™ Mult(gC)7=
[T Mule(pqy=""
11 Mu]t<Bg)Zm<Q+M+1)
q

Slide 89 bayes.hal3.name @:ﬁ Bayesian Techniques for HLT



See also: DM06
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Evaluation Data
> All TREC data

>
>
>

>

Queries 51-350 and 401-450 (35k words)
All relevant documents (43k docs, 2.1m sents, 65.8m words)

Asked 7 annotators to select up to 4 sentences for an extract
»  Each annotated 25 queries (166 total)

Systems produce ranked lists of sentences

»  Compared on mean average precision, mean reciprocal rank and precision at 2

» Computation Time:

v VvV VY VY VY VYV VY
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MAP-EM (2 hours)
Summing (2 days)
Monte Carlo (2 days)
MCMC (1 day)
Laplace (5 hours)
Variational (4 hours)

EP (2.5 hours)
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Evaluation Results

Mean Average Precision
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Latent Dirichlet Allocation

. [Blei, Ng + Jordan, JMLR 03]
» Unigram model of documents

Each document 1s a mixture over topics

Each topic 1s a mixture over words

> (Generative model for each document (M total):
> Choose a single topic mixture: 0 ~ Dir(«x)
» For each word (N total):
> Choose a topic for this word: z ~ Mult(6)
> Choose the word itself: w ~ Mult(B?)

K e et Oy o o B

N K
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LDA: Geometric Interpretation

[Blei, Ng + Jordan, JMLR 03]
bank

Doc 1: topography
Doc 2: finance

river money
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LDA: Inference [Blei, Ng + Jordan, JMLR 03]

Desired: either Bs or zS
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LDA: Naive Gibbs Sampler

[Griffiths + Tenenbaum, CogSci 03]

1|z_=j] Can collapse
3j ~ P(3J>H Mult( Winn | ﬁj> | 7 this step!
0, ~ Dir(0,|«)]] Muit(z,,|0,)

Zpn ~ Mull(z,,|0,)Mult(w,,|B, )

Slide 96 bayes.hal3.name @:@ Bayesian Techniques for HLT



LDA Results
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[Blei, Ng + Jordan, JMLR 03]

“Arts” “Budgets™ “Children” “Education”
NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOFPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDER AL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC
BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OFPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The Wilham Randolph Hearst Foundation will give 51.25 millon toLmmcoln Center, Metrmopol-

“Char boord felt that we had a

tan Opem Co., New York Philharmome and Julhiard  School,
real opportunity  to make amark on the future of the perfonming arts with these crunts an act
every bit asimportant as our traditional areas of support m bealth, medical rescwrch, edoeation

and the socrl secvices” Hearst Foundation Pree

the 2runl
will house young arhsts and provids
New York Philharmonic wall recons
the performang  arts are taoght, will get 5250060
of the Lincoln Center Consohdated Corporae ol
donation. too.

WL s

e |.|.|-':. actlities,

et Randolph A Hearst sadd Monday n
Lincoln Center’s share will be 52000000 for 1ts new b ne

CHMLIHK) each, The Juillhiard Schiool, where music and
The Hearst Fouon
. will make 1ts usoal anom

which
The Metrmopolitan Opera Co. and

atwn, a leading supporer
b LEH (0N
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Integrating Topics and Syntax

[Griffiths, Steyvers, Blei +
Tenenbaum, NIPS 2004]

O+
AN

For each document M:
Choose a topic mixture
For each word N:

Choose topic z
Choose class s
Choose w from:
B Z 1f s=0
Cs otherwise

- - !

0.5 0.4 TR
\ ¢ network images
network image kernel '
08 o netral images support s 07 im:tge kernel
3 networks object vector s, Tk
f P '
| output objects SV i output ohjects
I L S A .

in 4 4 med neural network svm images
with trained
fr -~ obtained

R 0.4 described
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[Griffiths, Steyvers, Blei +
Tenenbaum, NIPS 2004]

LDA versus Topics+Syntax

the the the the the a the the the
blood ; . of a the . : :

. and and . of of of a a
< of of of to . . a of in
Q body a in in in in and and game

heart in land and to water in drink hall

g and trees to classes picture is story alcohol and
in tree farmers government film and is (o team

to with for a image matter (o botile to

is of farm state lens are as in play

blood forest farmers government light water story drugs ball
heart trees land state aye matter stories drug game
pressure forests CTOpS federal lens molecules poem alcohol team
n body land farm ublic ima liquid ol f 1 "
> \ P ge qut characters people
© pu( lungs soil food local mirror particles poetry drinking baseball
Q_‘ OXVEEN areas people act eves gas character person players
) vessels park farming sfates glass solid author effects football
H arteries wildlife wheat national object substance poems marijuana player
. area farms laws objects tem perature life hody field
breathing rain corn department lenses changes poet use basketball
the in he . be sald can time
a for It new have made would way !
N his o you other sen used will YVears [
N this on they first make came could day
~ their with 1 same do went may part )
: these at she great know found had number
>} WOur by we good get called must kind
m her from there small 20 do place
my as this little take have
some into who old find did
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Matching Words and Pictures
[Barnard. Duygulu, de

Freitas, Forsyth, Blei +
Jordan, JMLR 2003]

1. People, tree

2. Sky, jet

3. Sky, clouds

4. Sky, mountain
5. Plane, jet

For each image/caption pair M 6. Plane, jet
Draw a topic mixture 0 ~ Dir(x)
For each image region P

Draw a topic z ~ Mult(0) (1)
Draw the region r ~ Gaussian(u,0?2) ;o

For each word N | *
Draw a image region y ~ Unif(1..P) @ @ 5

Draw the word w ~ Mult(Bzy) b
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Matching Words and Pictures

[Barnard. Duygulu, de Freitas,
Forsyth, Blei + Jordan, JMLR 2003]

True caption True caption True caption

market people scotland water sky tree water

Corr-LDA Corr-LDA Corr-LDA

people market pattern textile display scotland water flowers hills tree tree water sky people buildings

True caption True caption True caption
birds tree fish reefs water clouds jet plane
Corr-LDA Corr-LDA Corr-LDA
birds nest leaves branch tree fish water ocean tree coral

sky plane jet mountain clouds
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Conclusions

» Bayesian methods provide efficient, effective models
Graphical models are an easy language

Plug and play of Multinomial/Dirichlet/Beta/Gamma leads to
models that admit efficient Gibbs sampling methods

> For faster inference, the variational approximation 1is effective

» Bayesian models of text problems 1s largely unexplored

» Many topics not discussed:
» Alternative inference techniques (belief/expectation propagation)
> Classifiers/discriminative models (Gaussian Processes = SVMs)

> Infinite models (Dirichlet Processes, Chinese Restaurant Processes)
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For Further Information (Tutorials)
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