## Beyond EM: Bayesian Techniques for HLT

## Hal Daumé III

me@hal3. name
http: / /bayes.hal3. name/

Acknowledgments: David Blei, Yee-Whye Teh, Aaron D'Souza


## Horse Racing



## Who Should Be Here?

"My EM converges to garbage!"
"I want to integrate domain knowledge."
"My independence assumptions don't factor nicely!"
"Bayesian techniques are worthless... too hard...
too slow..."

## Tutorial Goals

## Understand when to be Bayesian

## Know the natural prior distributions

Draw complex graphical models

Implement a Gibbs sampler for LDA

Read NIPS/UAI/etc. papers

## Empirical Motivation

 Mean Average Precision

## Model for Q-F Summarization

> Suppose a document D is relevant to two queries, Q 1 and Q 2
> Mark each sentence with the degree to which it is about:
$>\mathrm{Q} 1$
$>$ Q2
> D , but not Q 1 nor Q 2
> General English
> Now, mark each word in that sentence with an absolute judgment about where it came from
$\Rightarrow$ Sentences which are more like Q 1 are more likely to have words from Q1
> General English words are likely to be consistent across the whole corpus
> Document-specific words are likely to be consistent across the whole document
> Query-specific words are likely to be consistent across all documents relevant to a given query


## Tutorial Outline

> Introduction to the Bayesian Paradigm
> Background Material
> Graphical Models
> Maximum Likelihood
> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions
> Summing
> Monte Carlo
> Markov Chain Monte Carlo
> Survey of Popular Models
> Pointers to Literature
> Conclusions
> Laplace Approximation
> Variational Approximation
> Message Passing...

## A Brief Refresher

Distributions
Binomial
Binary
$\operatorname{Bin}(x \mid N, \theta) \propto \theta^{n}(1-\theta)^{N-n}$


## Expectations:

$$
E_{x \sim p}[f(x)]= \begin{cases}\sum_{x \in X} p(x) f(x) \quad X \text { is discrete } \\ \int_{X} d x p(x) f(x) \quad X \text { is continuous }\end{cases}
$$

## Probability Calculus:

$$
p\left(x_{1: N}\right)=\prod_{n} p\left(x_{n} \mid x_{1: n-1}\right) \quad p(a \mid b)=\frac{p(a) p(b \mid a)}{p(b)}
$$

## The Bayesian Paradigm

> Every statistical problem has data and parameters
> Find a probability distribution of the parameters given the data using Bayes' Rule:

## Posterior

Likelihood

$$
P(\text { params } \mid \text { data })=\frac{P(\text { params }) P(\text { data } \mid \text { params })}{P(\text { data })}
$$

$>$ Use the posterior to:
> Predict unseen data
> Reach scientific conclusions
> Make optimal decisions
(machine learning)
(statistics)
(Bayesian decision theory)

## Models, Parameters and Data

$>$ Model $=$ Our explanation of the world (data)
> Examples: maximum entropy models, IBM model 1, trigram LM
> Parameters $=$ All unknown aspects of the model
> Examples: "lambda" parameters, T-table, p(ate I the man)
> Data $=$ All observed variables
> Inference problems:
$>$ Estimate parameters (or their distribution)
> Estimate missing data (prediction)
> Find a good model

## What is a Good Model?

> We can consider models by looking at the probability that they generate our data set (the marginal likelihood of the data):


## Tutorial Outline

> Introduction to the Bayesian Paradigm
> Background Material
> Graphical Models
> Maximum Likelihood
> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions
> Summing
> Monte Carlo
> Markov Chain Monte Carlo
> Survey of Popular Models
> Pointers to Literature
> Conclusions

## Graphical Models

> Convenient notation for representing probability distributions and conditional independence assumptions


## Example 1: Naïve Bayes

Feature parameters


## Example 1: Naïve Bayes



$$
\begin{aligned}
& p(D \mid \theta, \pi) \\
& \quad=\prod_{n} p\left(y_{n} \mid \pi\right) \prod_{f} p\left(x_{n f} \mid y_{n}, \theta\right) \\
& \quad=\prod_{n} \pi^{y_{n}}(1-\pi)^{1-y_{n}} \prod_{f} \prod_{v} \theta_{y_{n} f v}^{x_{n f v}},
\end{aligned}
$$

$\theta_{y f v}=$ probability that feature $f$ takes value $v$ if the class is $y$

## Example 2: Maximum Entropy



## Example 3: Hidden Markov Models



## Example for Summarization

$>$ Consider a stupid summarization model:
> Each word in a document is drawn independently
> Each word is draw either from a general English model, or a document specific model
> We don't know which words are drawn from which

$$
\begin{aligned}
& p\left(w \mid \pi, \beta^{G}, \beta^{D}\right)= \\
& \prod_{m} \prod_{n} \sum_{z_{m n}} p\left(z_{m n} \mid \pi\right) \\
& \quad p\left(w \mid \beta^{G}\right)^{z_{m n}} \\
& p\left(w \mid \beta_{m}^{D}\right)^{1-z_{m n}}
\end{aligned}
$$



## Fun with Graphical Models

> Easy to propose extensions to the model: add sentences!


## Fun with Graphical Models

> Add queries!


## Tutorial Outline

> Introduction to the Bayesian Paradigm
> Background Material
> Graphical Models
> Maximum Likelihood
> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions
> Summing
> Monte Carlo
> Markov Chain Monte Carlo
> Survey of Popular Models
> Pointers to Literature
> Conclusions

## Maximum Likelihood Estimators (MLE)

> Take a parameterized model and some data
> Find the parameters that maximize the likelihood of that data (i.e., the 'probability' of the parameters given the data):

$$
\begin{array}{r}
L\left(\theta, \pi \mid X_{1: N}, Y_{1: N}\right)=\prod_{n=1}^{N}\left|\prod_{k=1}^{K} \pi_{k}^{Y_{n k}}\left(1-\pi_{k}\right)^{1-Y_{n k}}\right| \\
l\left(\prod_{f=1}^{F}\left|\theta_{f}^{Y_{n}}\right|^{X_{n f}}\left|1-\theta_{f}^{Y_{n}}\right|^{1-X_{n f}} \mid\right. \\
l(\theta)=\sum_{n} \sum_{k}\left(Y_{n k} \log \pi_{k}+\left(1-Y_{n k}\right) \log \left(1-\pi_{k}\right)\right) \\
\quad+\sum_{n} \sum_{f}^{k}\left(X_{n f} \log \theta_{f}^{Y_{n}}+\left(1-X_{n f}\right) \log \left(1-\theta_{f}^{Y_{n}}\right)\right)
\end{array}
$$

$$
\frac{\partial l}{\partial \pi}=\sum_{n} \sum_{k}\left[\frac{Y_{n k}}{\pi_{k}}-\frac{1-Y_{n k}}{1-\pi_{k}}\right]
$$

$$
\frac{\partial l}{\partial \theta^{k}}=\sum_{n: Y_{n}=k} \sum_{f}\left[\frac{X_{n f}}{\theta_{f}^{k}}-\frac{1-X_{n f}}{1-\theta_{f}^{k}}\right]
$$



## Tutorial Outline

> Introduction to the Bayesian Paradigm
> Background Material
> Graphical Models
> Maximum Likelihood
> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions
> Summing
> Monte Carlo
> Markov Chain Monte Carlo
> Survey of Popular Models
> Pointers to Literature
> Conclusions
> Laplace Approximation
> Variational Approximation
> Message Passing...

## MLE with hidden variables

> Consider a stupid summarization model:
> Each word in a document is drawn independently
> Each word is draw either from a general English model, or a document specific model
> We don't know which words are drawn from which $p\left(w \mid \pi, \beta^{G}, \beta^{D}\right)=\prod_{m} \prod_{n} \sum_{z_{m n}} p\left(z_{m n} \mid \pi\right) p\left(w \mid \beta^{G}\right)^{z_{m n}} p\left(w \mid \beta_{m}^{D}\right)^{1-z_{m n}}$
> Compute log likelihood:

$$
l(\pi, \beta \mid w)=\sum_{m} \sum_{n} \log \sum_{z_{m n}} \ldots
$$

> Uh oh! Logs can't go inside sums!


## Expectation Maximization

> We would like to move the log inside the sum, but can we?
> Jensen's Inequality to the rescue:

$$
\begin{aligned}
\log p(x \mid \theta) & =\log \int_{z} d z p(x, z \mid \theta) \\
& =\log \int_{z} d z q(z) \frac{p(X, z \mid \theta)}{q(z)} \\
& \geq \int_{Z} d z q(z) \log \frac{p(X, z \mid \theta)}{q(z)} \\
& =\int_{Z} q(z) \log p(x, z \mid \theta)-\int_{z} q(z) \log q(z) \\
& =\boldsymbol{E}_{z \sim q}\{\log p(x, z \mid \theta)\}-\boldsymbol{E}_{z \sim q}\{\log q(z)\}
\end{aligned}
$$

> For any distribution $Q$ (with the same support)
> How should we choose $Q$ ?

## Expectation Maximization

> If we set $q(z)=p(z \mid x, \theta)$ then the lower bound becomes an equality:

$$
\begin{aligned}
\int_{Z} d z q(z) \log \frac{p(x, z \mid \theta)}{q(z)} & =\int_{z} d z p(x \mid z, \theta) \log \frac{p(x, z \mid \theta)}{p(x \mid z, \theta)} \\
& =\int_{z} d z p(x \mid z, \theta) \log \frac{p(z \mid x, \theta) p(x \mid \theta)}{p(x \mid z, \theta)} \\
& =\int_{z} d z p(x \mid z, \theta) \log p(x \mid \theta) \\
& =\log p(x \mid \theta) \int_{z} d z p(x \mid z, \theta) \\
& =\log p(x \mid \theta)
\end{aligned}
$$

$>$ So, when computing $\boldsymbol{E}_{z \sim q}\{\log p(x, z \mid \theta)\}$, the expectation should be taken with respect to the true posterior

## EM in Practice

> Recall, we wanted to estimate parameters for:

$$
\begin{aligned}
p\left(w \mid \pi, \beta^{G}, \beta^{D}\right) & =\prod_{m} \prod_{n} \sum_{z_{m}} p\left(z_{m n} \mid \pi\right) p\left(w \mid \beta^{G}\right)^{z_{m m}} p\left(w \mid \beta_{m}^{D}\right)^{1-z_{m m}} \\
& =\prod_{m} \prod_{n} E_{z_{m n} \sim}\left\{p\left(w \mid \beta^{G}\right)^{z_{m m}} p\left(w \mid \beta_{m}^{D}\right)^{1-z_{m m}}\right\}
\end{aligned}
$$

> So we replace the hidden variables with their expectations:

$$
l(\beta \mid w) \geq \sum_{m} \sum_{n} \boldsymbol{E}\left\{z_{m n}\right\} \log p\left(w \mid \beta^{G}\right)+\left(1-\boldsymbol{E}\left\{z_{m n}\right\}\right) \log p\left(w \mid \beta_{m}^{D}\right)
$$

> All we need to do is calculate the expectations:

$$
\boldsymbol{E}\left\{z_{m n}\right\} \propto p\left(z_{m n}=1 \mid \pi\right) p\left(w \mid \beta^{G}\right)
$$

> And now the computation proceeds as in the no-hiddenvariable setting

## EM Summed Up

> Initialize parameters however you desire
> Repeat:
> E-STEP:
Compute expectations of hidden variables under the current parameter settings
> M-STEP:
Optimize parameters given those expectation
> This procedure is guaranteed to:
> Converge to a (local) maximum
> Monotonically increase the incomplete log-likelihood

## EM Graphically



## EM on our simple model

> Suppose we have three words: $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
$>$ Document $1=[\mathrm{AB}]$, Document $2=[\mathrm{A} \mathrm{C}]$
> Initialized uniformly

$>$ E-step: $\left.\quad \boldsymbol{E}\left\{Z_{m n}\right\} \propto p_{\left(Z_{m n}\right.}=1 \mid \pi\right) p\left(W \mid \beta^{G}\right)$

$$
\begin{aligned}
& \boldsymbol{E}\left\{z_{11}\right\}=\frac{\pi \beta_{A}^{G}}{\pi \beta_{A}^{G}+(1-\pi) \beta_{1 A}^{D}}=\frac{0.5 * 1 / 3}{0.5 * 1 / 3+0.5 * 1 / 3}=0.5 \\
& \boldsymbol{E}\left\{z_{12}\right\}=\boldsymbol{E}\left\{z_{21}\right\}=\boldsymbol{E}\left\{z_{22}\right\}=0.5
\end{aligned}
$$

> M-step:

$$
\begin{array}{ll}
\beta_{A}^{G}=\frac{1}{Z}\left[\boldsymbol{E}\left\{z_{11}\right\}+\boldsymbol{E}\left\{z_{21}\right\}\right]=\frac{1}{2} & \beta_{B}^{G}=\frac{1}{Z}\left[\boldsymbol{E}\left\{z_{12}\right\}\right]=\frac{1}{4} \\
\beta_{1 A}^{D}=\frac{1}{Z}\left[1-\boldsymbol{E}\left\{z_{11}\right\}\right]=\frac{1}{2} & \beta_{C}^{G}=\frac{1}{Z}\left[\boldsymbol{E}\left\{z_{22}\right\}\right]=\frac{1}{4} \\
\beta_{2 A}^{D}=\frac{1}{Z}\left[1-\boldsymbol{E}\left\{z_{21}\right\}\right]=\frac{1}{2}\left[1-\boldsymbol{E}\left\{z_{12}\right\}\right]=\frac{1}{2} & \beta_{1 C}^{G}=0 \\
\pi=\frac{E\left\{z_{11}\right\}+E\left\{z_{21}\right\}}{E\left\{z_{11}\right\}+E\left\{z_{21}\right\}+E\left\{z_{12}\right\}+E\left\{z_{22}\right\}}=\frac{\beta_{2 B}^{D}=0}{} & \beta_{2 C}^{G}=\frac{1}{Z}\left[1-\boldsymbol{E}\left\{z_{22}\right\}\right]=\frac{1}{2} \\
\pi
\end{array}
$$

## EM on our simple model

> Suppose we have three words: $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
$>$ Document $1=[\mathrm{AB}]$, Document $2=[\mathrm{A} \mathrm{C}]$
> Initialized uniformly

## Task: Implement EM for this model + data

Incomplete log likelihood


## Problems with Maximum Likelihood

Powerful model $\Rightarrow$ Worthless results<br>(due to overfitting...)

## Theoretically unjustified <br> (some would argue...)

Computationally Expensive
(all that cross-validation...)
Background knowledge is $0 / 1$


## Tutorial Outline

> Introduction to the Bayesian Paradigm
> Background Material
> Graphical Models
> Maximum Likelihood
> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions
> Summing
> Monte Carlo
> Markov Chain Monte Carlo
> Survey of Popular Models
> Pointers to Literature
> Conclusions

## What is a Prior?

> Recall Bayes' Rule:

$$
P(\theta \mid D)=\frac{P(\theta) P(D \mid \theta)}{\int_{\theta} d \theta P(\theta) P(D \mid \theta)}
$$

## Marginal

- A prior is a specification of our beliefs about the values parameters can take, before seeing any data


## How Does the Posterior Behave?

Take sequence of data $x_{1}, \ldots, x_{\mathrm{N}} \ldots$

$$
\begin{aligned}
& p(\theta)= \\
& \text { just the prior } \\
& p\left(\theta \mid x_{1}\right)=\frac{p(\theta) p\left(x_{1} \mid \theta\right)}{\int d \theta p(\theta) p\left(x_{1} \mid \theta\right)} \\
& p\left(\theta \mid x_{1,} x_{2}\right)=\frac{p\left(\theta \mid x_{1}\right) p\left(x_{2} \mid \theta\right)}{\int d \theta p\left(\theta \mid x_{1}\right) p\left(x_{2} \mid \theta\right)} \\
& \vdots \\
& p\left(\theta \mid x_{1: N}\right)=\frac{p\left(\theta \mid x_{1: N-1}\right) p\left(x_{N} \mid \theta\right)}{\int d \theta p\left(\theta \mid x_{1: N-1}\right) p\left(x_{N} \mid \theta\right)} \\
&=\frac{p(\theta) \prod_{n} p\left(x_{n} \mid \theta\right)}{\int d \theta p(\theta) \prod_{n} p\left(x_{n} \mid \theta\right)}
\end{aligned}
$$

## Binomial Example













Slide 36

## Specifying Priors

$>$ A prior is a map $\pi$ that:
> Assigns to every setting of parameters a real value
> Integrates to 1 over the parameter space
> Such a beast can be difficult to describe! Tools:
> When the parameters are discrete, we can set them by hand
> Otherwise, we will often choose a parametric prior $\pi(\theta)=\pi(\theta \mid \alpha)$ and deal with the hyper-parameters
> Or choose a set of priors and integrate over them (robust Bayes)

## Empirical Bayes

> Specify a class of priors (typically a functional form):

$$
\Gamma=\{\pi: \pi(\theta)=g(\theta \mid \alpha)\}
$$

> Estimate the prior by maximizing the marginal likelihood:

$$
\begin{aligned}
\hat{\pi} & =\max _{\pi \in \Gamma} p(x \mid \pi) \\
& =\max _{\alpha \in A} \int_{\Theta} d \theta \pi(\theta \mid \alpha) p(x \mid \theta)
\end{aligned}
$$

## Conjugate (convenient) Priors

- Recall: $p\left(\theta \mid x_{1: N}\right)=\frac{p(\theta) \prod_{n} p\left(x_{n} \mid \theta\right)}{\int d \theta p(\theta) \prod_{n} p\left(x_{n} \mid \theta\right)}$
> Given a distribution $p(X \mid \theta)$
$>$ And a prior $\pi(\theta \mid \alpha)$
> The prior is conjugate if:

$$
p(\theta \mid \alpha, x)=\frac{\pi(\theta \mid \alpha) p(x \mid \theta)}{\int_{\Theta} F^{\pi(\alpha)}(\theta) p(x \mid \theta)}=\pi(\theta \mid \stackrel{\circ}{\alpha})
$$

## Summary of Distributions

Distribution Domain Picture Parametric Form

| Binomial | Binary | $\operatorname{Bin}(X \mid N, \theta) \propto \theta^{n}(1-\theta)^{N}$ |
| :---: | :---: | :---: |
| Multinomial | K classes | $\operatorname{Mult}(\bar{X} \mid \bar{\theta}) \propto \prod \theta_{k}^{X_{k}}$ |
| Beta | [0,1] | $\operatorname{Beta}(\theta \mid \alpha, \beta) \propto \theta^{\alpha-1}(1$ |
| Gamma | $[0, \infty)$ | $\operatorname{Gam}(x \mid a, b) \propto x^{-a-1} \exp (-b x)$ |
| Dirichlet | Simplex | $\operatorname{Dir}(\bar{\theta} \mid \bar{\alpha}) \propto \prod \theta_{k}^{\alpha_{k}-1}$ |
| Gaussian | Reals | $\operatorname{Nor}\left(x \mid \mu, \sigma^{2}\right) \propto \exp \left((x-\mu)^{2} / 2 \sigma^{2}\right)$ |

## Binomial and Beta Distributions

> Binomial distribution models flips of coins (domain=\{0,1\}):
> Probability that a coin, bias $\theta$, flipped $N$ times will come up $x$ heads
> Parameters: $N \in \mathbb{N}^{+}, \theta \in[0,1]$
> Distribution: $\operatorname{Bin}(x \mid N, \theta)=\binom{N}{X} \theta^{n}(1-\theta)^{N-n}$
> Moments: $\quad \mu=N \theta, \operatorname{var}=N \theta(1-\theta+N \theta)$
$>$ Beta distribution models nothing (we care about) $($ domain $=[0,1])$ :
> Parameters: $\alpha \in \mathbb{R}^{+}, \beta \in \mathbb{R}^{+}$
> Distribution: $\operatorname{Beta}(\theta \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}$
> Moments: $\quad \mu=\frac{\alpha}{\alpha+\beta}, \quad \operatorname{var}=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
> Beta is conjugate to binomial:
> Posterior parameters: $\stackrel{\circ}{\alpha}=\alpha+x, \stackrel{\circ}{\beta}=\beta+N-x$
> Marginal distribution:

$$
p(x \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}\binom{N}{x} \frac{\Gamma(\alpha+x) \Gamma(\beta+N-x)}{\Gamma(\alpha+\beta+N)}
$$

## Beta Distribution Examples

$$
\operatorname{Beta}(\theta \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}
$$







$\beta=4$




## Multinomial Distribution

> A distribution over counts of $\mathrm{K}>1$ discrete events (words)
> Domain: $\left\langle\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{K}\right\rangle \in \mathbb{N}^{K}$
> Parameters: $\left\langle\theta_{1}, \ldots, \theta_{K}\right\rangle \in \Delta_{K}=\left\{\theta_{1: K}: \theta_{k} \geq 0, \sum_{k} \theta_{k}=1\right\}$
$\Rightarrow$ Distribution: $\operatorname{Mult}(\bar{x} \mid \bar{\theta})=\frac{\Gamma\left(\sum x_{k}+1\right)}{\prod \Gamma\left(x_{k}+1\right)} \prod \theta_{k}^{x_{k}}$
$\rangle$ Moments: $\left\langle\theta_{1}, \ldots, \theta_{K}\right\rangle \in \Delta_{K}=\left\{\theta_{1: K}: \theta_{k} \geq 0, \sum_{k} \theta_{k}=1\right\}$


## Dirichlet Distribution

> A distribution over a probability simplex
$>$ Domain: $\left\langle\theta_{1}, \ldots, \theta_{K}\right\rangle \in \delta^{K}$
> Parameters: $\left\langle\alpha_{1}, \ldots, \alpha_{K}\right\rangle \in\left(\mathbb{R}^{+}\right)^{K}, \quad \hat{\alpha}=\sum_{k} \alpha_{k}$
> Distribution: $\operatorname{Dir}(\bar{\theta} \mid \bar{\alpha})=\frac{\Gamma(\hat{\alpha})}{\prod_{k} \Gamma\left(\alpha_{k}\right)} \prod_{k} \theta_{k}^{\alpha_{k}-1}$


[1,1,2]


## Multinomial/Dirichlet Pair

> Multinomial distribution: $\operatorname{Mult}(\bar{X} \mid \bar{\theta})=\frac{\Gamma\left(\sum x_{k}+1\right)}{\prod \Gamma\left(x_{k}+1\right)} \prod \theta_{k}^{x_{k}}$
> Dirichlet distribution:

$$
\operatorname{Dir}(\bar{\theta} \mid \bar{\alpha})=\frac{\Gamma(\hat{\alpha})}{\prod_{k} \Gamma\left(\alpha_{k}\right)} \prod_{k} \theta_{k}^{\alpha_{k}-1}
$$

> Posterior hyper-parameters:

$$
\left\langle\alpha_{1}^{\circ}, \ldots, \propto_{K}^{\circ}\right\rangle=\left\langle\alpha_{1}+x_{1}, \ldots, \alpha_{K}+X_{K}\right\rangle
$$

> Marginal Distribution:

$$
p(\bar{x} \mid \bar{\alpha})=\frac{\Gamma\left(\sum x_{k}+1\right)}{\prod \Gamma\left(x_{k}+1\right)} \frac{\Gamma(\hat{\alpha})}{\prod \Gamma\left(\alpha_{k}\right)} \frac{\prod \Gamma\left(\alpha_{k}+x_{k}\right)}{\Gamma\left(\hat{\alpha}+\sum x_{k}\right)}
$$

## Gaussian/Gaussian-Gamma

> Gaussian distribution: $\operatorname{Nor}\left(x \mid \mu, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{1 / 2} \exp -\left(\frac{x-\mu}{2 \sigma}\right)^{2}$
> Gaussian prior: $\operatorname{Nor}\left(\mu \mid m, s^{2}\right)$
> Gamma prior: $\operatorname{Gam}(\sigma \mid a, b)=\frac{1}{b^{a} \Gamma(a)} \sigma^{-2 \mathrm{a}-1} \exp -\frac{1}{b \sigma^{2}}$

$$
a>0, \quad b>0, \text { domain }=\mathbb{R}^{+}
$$

> Posterior hyper-parameters:

$$
\begin{array}{ll}
\stackrel{S}{S}=\left(\frac{1}{s^{2}}+\frac{1}{\sigma^{2}}\right)^{-1 / 2} & \stackrel{\circ}{m}=\frac{\mathrm{m} / s^{2}+\sum_{i} x_{i} / \sigma^{2}}{1 / s^{2}+N / \sigma^{2}} \\
\dot{a}=a+1 / 2 & \circ \\
\circ & =\left(b^{-1}+\frac{1}{2} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right)^{-1}
\end{array}
$$

> Marginal distribution:

$$
p\left(x \mid m, s^{2}, a, b\right)=\operatorname{StuT}(m, a, b)
$$

## Gamma Distribution

$\operatorname{Gam}(x \mid a, b)=\frac{b^{a}}{\Gamma(a)} x^{-a-1} \exp (-b x)$

$$
\begin{aligned}
\mu & =a / b \\
\operatorname{var} & =a / b^{2}
\end{aligned}
$$











## Conjugate Priors in Action



## Tutorial Outline

> Introduction to the Bayesian Paradigm
> Background Material
> Graphical Models
> Maximum Likelihood
> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions
> Summing
> Monte Carlo
> Markov Chain Monte Carlo
> Survey of Popular Models
> Pointers to Literature
> Conclusions

## Recall our summarization model



$$
\begin{array}{l|ll}
Z & \pi & \sim \operatorname{Bin}(\pi) \\
W & Z, \beta & \sim \operatorname{Mult}\left(\beta^{G}\right)^{Z} \operatorname{Mult}\left(\beta^{D}\right)^{1-z}
\end{array}
$$

$>$ The problem was that we don't believe that it's okay for $\pi$ to go to 0 or 1
> Solution?
Put a prior on $\pi$ !

- What's a good prior?


## Bayesianified summarization model



$$
\begin{array}{l|ll}
\pi & a, b \sim \operatorname{Beta}(a, b) \\
\hline z & \pi & \sim \operatorname{Bin}(\pi) \\
W & z, \beta & \sim \operatorname{Mult}\left(\beta^{G}\right)^{Z} \operatorname{Mult}\left(\beta^{D}\right)^{1-z}
\end{array}
$$

$p(D \mid \beta, a, b)=\int_{U} d \pi \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \pi^{a-1}(1-\pi)^{b-1}$

Conjugacy does not help because of the hidden variables

$$
\prod_{m n n} \prod_{z_{m n} \in\{0,1\}} \pi^{z_{m n}}(1-\pi)^{1-z_{m n}}
$$

$$
\prod_{V}\left(\beta_{V}^{G}\right)^{Z_{m n} W_{m n v}}\left(\beta_{d V}^{D}\right)^{\left(1-z_{m n}\right) W_{m n v}}
$$

## Interesting Inference Questions

> Predict values of unobserved data:

$$
P(U \mid D) \propto \int_{\Theta} d \pi(\theta) P(D \mid \theta) P(U \mid \theta)
$$

> Compute data likelihood:

$$
P(D) \propto \int_{\Theta} d \pi(\theta) P(D \mid \theta)
$$

> Maximize marginal likelihood:

$$
P(\alpha \mid D) \propto \int_{\Theta} d \pi(\theta \mid \alpha) P(D \mid \theta)
$$

> Estimate posterior:

$$
P(\theta \mid D)=\frac{\pi(\theta) P(D \mid \theta)}{P(D)}
$$

> GENERAL FORM:

$$
F=\int_{X} d x p(x) f(x)=\boldsymbol{E}_{x \sim p}\{f(x)\}
$$

## Tutorial Outline

> Introduction to the Bayesian Paradigm
> Background Material
> Graphical Models
> Maximum Likelihood
> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions
> Summing
> Monte Carlo
> Markov Chain Monte Carlo
> Survey of Popular Models
> Pointers to Literature
> Conclusions

## Integration by Summation

$>$ Remember your $9^{\text {th }}$ grade math:


$$
F=\int_{X} d x p(x) f(x) \approx \frac{1}{R} \sum_{x \in R} p(x) f(x)
$$

## Summing in our Model

> Simply rewrite the integral as a sum:

$$
\begin{aligned}
& p(D \mid \beta, a, b)=\int_{U} d \pi \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \pi^{a-1}(1-\pi)^{b-1} \\
& \prod_{m} \prod_{n} \sum_{z_{m m} \in[0,1]} \pi^{z_{m m}}(1-\pi)^{1-z_{m m}} \prod_{v}\left(\beta_{v}^{G}\right)^{Z_{m m} w_{m m}}\left(\beta_{d v}^{D}\right)^{\left(1-z_{m m}\right) w_{m o}} \\
& \approx \frac{\sum_{p=1}^{100} \Gamma(a+b)}{\Gamma(a) \Gamma(b)}(p / 100)^{a-1}(1-p / 100)^{b-1} \\
& \prod_{m} \prod_{n} \sum_{z_{m \in} \in(0,1]}(p / 100)^{z_{m n}}(1-p / 100)^{1-z_{m n}} \\
& \prod_{v}\left(\beta_{v}^{G}\right)^{z_{m a} w_{\operatorname{man}}}\left(\beta_{d v}^{D}\right)^{\left(1-z_{m p}\right) W_{\operatorname{man}}}
\end{aligned}
$$

## Integration by Summation

> Pros:
> Easy to implement
> Arbitrarily accurate
> Cons:
> Only works for doublybounded regions
> Intractable for $>1$ or $>2$ dimensions


$$
F=\int_{X} d x p(x) f(x) \approx \frac{1}{R} \sum_{x \in R} p(x) f(x)
$$

> Difficult to choose granularity
> Idea: let's choose R differently

## Tutorial Outline

> Introduction to the Bayesian Paradigm
> Background Material
> Graphical Models
> Maximum Likelihood
> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions
> Summing
> Monte Carlo
> Markov Chain Monte Carlo
> Survey of Popular Models
> Pointers to Literature
> Conclusions

## Monte Carlo Integration

> Uniform sampling:
> Let R be a (multi)set of points drawn uniformly at random


$$
F=\int_{X} d x p(x) f(x) \approx \frac{1}{R} \sum_{x \in R} p(x) f(x)
$$

## Uniform Sampling

> Pros:
> Can now work in arbitrarily high dimensions (in theory)
> Choice is now size of R , not the width of windows
> Cons:
> Number of samples required
 to get near the mode of a spiky distribution is huge: $\quad R \sim 2^{D / 2}$
> True distribution is rarely uniform

## Importance Sampling

> Let R be a set of points drawn from a proposal distribution q


## Importance Sampling

> Pros:
> If $q$ can be constructed similar to $p$, then good samples can be had
> Can scale better than uniform sampling (not saying much)
$>$ Cons:

> Very sensitive to choice of $q$
> Hard to evaluate whether it has converged
> Still a lot of samples required:
IS: $R \sim \exp \sqrt{2 D}$
US: $R \sim 2^{D / 2}$

## Tutorial Outline

> Introduction to the Bayesian Paradigm
> Background Material
> Graphical Models
> Maximum Likelihood
> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions
> Summing
> Monte Carlo
> Markov Chain Monte Carlo
> Survey of Popular Models
> Pointers to Literature
> Conclusions

## Markov Chain Monte Carlo

> Monte Carlo methods suffer because the proposal density needs to be similar to the true density everywhere
> MCMC methods get around this problem by changing the proposal density after each sample
> General framework:
> Choose a proposal density $q(\mid x)$ parameterized by location $x$
> Initialize state $x$ arbitrarily
> Repeatedly sample by:
> Propose a new state $x^{\prime}$ from $q\left(x^{\prime} \mid x\right)$
> Either accept or reject this new state
$>\quad$ If accepted, set $x=x^{\prime}$
> New problem: samples are no longer independent!

## Metropolis-Hastings Sampling

> Accept new states with probability: $\min \left\{1, \frac{p\left(x^{\prime}\right)}{p(x)} \frac{q\left(x \mid x^{\prime}\right)}{q\left(x^{\prime} \mid x\right)}\right\}$
> Only put every $\mathrm{N}^{\mathrm{th}}$ sample into R


## MH in our Model

> Invent a proposal distribution $q$

$$
\begin{array}{l|l}
\log a^{\prime} & a \sim \operatorname{Nor}(\log (a), 1) \\
\log b^{\prime} & b \sim \sim \operatorname{Nor}(\log (b), 1) \\
\left.\sigma(\pi)^{\prime}\right) & \pi \sim \operatorname{Nor}(\sigma(\pi), 1) \\
z_{m n}^{\prime} & z \sim \operatorname{Bin}(0.5)
\end{array}
$$


> Or, condition on all variables:

$$
\begin{aligned}
\log a^{\prime} & \sim \operatorname{Nor}(\log (a), 1) \\
\log b^{\prime} & \sim \operatorname{Nor}(\log (b), 1) \\
\left.\sigma(\pi)^{\prime}\right) & \sim \operatorname{Beta}\left(\pi^{\prime} \mid a, b\right) \prod_{m, n} \operatorname{Bin}\left(z_{m n} \mid \pi\right) \\
z_{m n}{ }^{\prime} & \sim \operatorname{Bin}\left(z_{m n}{ }^{\prime} \mid \pi\right) p\left(W_{m n} \mid z_{m n}{ }^{\prime}, \beta\right)
\end{aligned}
$$

> Now we can compute expectations of $z$ easily and use these for the M-step of EM

## Metropolis-Hastings Sampling

$>$ Pros:
> No longer need to specify a universally good proposal distribution; only locally good
> Simple proposal distributions can go far

> Cons:
> Hard to tell now far to space samples:
> Suppose we use spherical proposals and, then we need at least

$$
N \geq\left(\sigma_{\max } / \sigma_{\min }\right)^{2}
$$

where sigmas are lengths of the major density in $p$
> Auto-correlation to track this:

$$
r_{k}=\frac{\sum_{i=1}^{N-k}\left(x_{i}-\overline{\boldsymbol{X}}\right)\left(X_{i+k}-\overline{\boldsymbol{X}}\right)}{\sum_{i=1}^{N}\left(X_{i}-\overline{\boldsymbol{X}}\right)^{2}}
$$

## Gibbs Sampling

> Defined only for multidimensional problems
> Useful when you can take out one variable and explicitly sample the rest


$$
F=\int_{X} d x p(x) f(x) \approx \frac{1}{R} \sum_{x \in R} f(x)
$$

## Gibbs Sampling

> Typically our params are: $\bar{\theta}=\left\langle\theta_{1}, \ldots, \theta_{D}\right\rangle$
> If, for each $i$, we can draw a sample from:

$$
p\left(\theta_{i} \mid \theta_{-i}\right)=p\left(\theta_{i} \mid \theta_{1}, \ldots, \theta_{i-1}, \theta_{i+1}, \ldots, \theta_{D}\right)
$$

then we can use Gibbs sampling


$$
F \approx \frac{1}{R} \sum_{x \in R} f(x)
$$

> In graphical models, only depends on the Markov blanket:

$$
p\left(\theta_{i} \mid \theta_{-i}\right)=p\left(\theta_{i} \mid \operatorname{par}\left(\theta_{i}\right)\right) \prod_{j: \theta_{i} \in \operatorname{par}\left(\theta_{j}\right)} p\left(\theta_{j} \mid \operatorname{par}\left(\theta_{j}\right)\right)
$$



## Gibbs in our Model

> Compute conditional probabilities

$$
\begin{array}{l|ll}
a, b & \neg a, b & \sim \operatorname{Beta}(\pi \mid a, b) \\
\pi & \neg \pi & \sim \operatorname{Beta}(\pi \mid a, b) \prod_{m, n} \operatorname{Bin}\left(z_{m n} \mid \pi\right) \\
z_{m n} & \neg Z_{m n} & \sim \operatorname{Bin}\left(z_{m n} \mid \pi\right) p\left(W_{m n} \mid z_{m n}, \beta\right)
\end{array}
$$


$>$ Now we can compute expectations of $z$ easily and use these for the M-step of EM
> Alternatively, we could propose values for LMs in the sampling

## Gibbs Sampling

$>$ Pros:
> Designed to work in high dimensional spaces
> Terribly simple to implement
> Automatable

> Cons:
> Hard to judge convergence, can require many many samples to get an independent one (often worse than MH)
> Only applicable when conditional distributions are 'nice'
> (Though there are ways around this)

## Tutorial Outline

> Introduction to the Bayesian Paradigm
> Background Material
> Graphical Models
> Maximum Likelihood
> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions
> Summing
> Monte Carlo
> Markov Chain Monte Carlo
> Survey of Popular Models
> Pointers to Literature
> Conclusions

## Laplace (Saddlepoint) Approximation

> Idea: approximate the expectation by a quadratic (Taylor expansion) and use the normalizing constant from the resulting Gaussian distribution


$$
F=\int_{X} d x p(x) f(x) \approx g\left(x_{0}\right) \sqrt{\frac{2 \pi}{c}}, c=-\left[\frac{\partial^{2}}{\partial x^{2}} \ln g(x)\right]_{x=x_{0}}
$$

## Laplace Approximation

> Find a mode $\mathrm{x}_{0}$ of the high-dimensional distribution $g$
> Approximate $\ln g(x)$ by a Taylor expansion around this mode:


$$
\ln g(\bar{X}) \approx \ln g\left(\bar{x}_{0}\right)-\frac{1}{2}\left(\bar{X}-\bar{x}_{0}\right)^{T} \boldsymbol{A}\left(\bar{X}-\bar{x}_{0}\right) \quad c=-\left[\partial^{2} \ln g(x) / \partial x^{2}\right]_{x=x_{0}}
$$

> Compute the matrix $\mathbf{A}$ of second derivatives

$$
A_{i j}=-\left[\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \ln g(\bar{x})\right]_{x=x_{0}}
$$

> The exponential form is a Gaussian distribution; use the Gaussian normalizing constant:

$$
F=\int_{\mathbb{R}^{d}} d x g(x) \approx g\left(\bar{x}_{0}\right) \sqrt{\frac{(2 \pi)^{D}}{\operatorname{det} \boldsymbol{A}}}
$$

## Laplace in our Model

> Compute second derivatives:

$$
\int_{U} d \pi Z_{a b} \pi^{a-1}(1-\pi)^{b-1} \prod_{m} \prod_{n} \sum_{z_{m n}} \pi^{z_{m n}}(1-\pi)^{1-z_{m n}} p\left(W_{m n} \mid z_{m n}, \beta\right)
$$

$$
g(\pi)
$$

$$
\frac{\partial \log g}{\partial \pi}=\frac{(a-1)}{\pi}-\frac{(b-1)}{(1-\pi)}+\sum_{m, n}\left[\frac{z_{m n}}{\pi}-\frac{\left(1-z_{m n}\right)}{(1-\pi)}\right]
$$

$$
\frac{\partial^{2} \log g}{\partial \pi^{2}}=-\frac{(a-1)}{\pi^{2}}-\frac{(b-1)}{(1-\pi)^{2}}-\sum_{m, n}\left[\frac{z_{m n}}{\pi^{2}}+\frac{\left(1-z_{m n}\right)}{(1-\pi)^{2}}\right]
$$

$$
\frac{\pi_{0}}{\left(1-\pi_{0}\right)}=\frac{a-1+\sum_{m, n} z_{m n}}{b-1+\sum_{m, n}\left(1-z_{m n}\right)}
$$

$$
F=\int_{X} d x p(x) f(x) \approx g\left(x_{0}\right) \sqrt{\frac{2 \pi}{c}}, c=-\left[\frac{\partial^{2}}{\partial x^{2}} \ln g(x)\right]_{x=x_{0}}
$$

## Laplace Approximation

> Pros:
> Deterministic
$>$ Efficient if $\mathbf{A}$ is of a suitable form (i.e., diagonal or block-diagonal)
> Can apply transformations to make quadratic approximation more reasonable

$c=-\left[\partial^{2} \ln g(x) / \partial x^{2}\right]_{x=x_{0}}$
$>$ Cons:
> Poor fit for multimodal distributions
> Often, det $\mathbf{A}$ cannot be found efficiently

## Tutorial Outline

> Introduction to the Bayesian Paradigm
> Background Material
> Graphical Models
> Maximum Likelihood
> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions
> Summing
> Monte Carlo
> Markov Chain Monte Carlo
> Survey of Popular Models
> Pointers to Literature
> Conclusions

## Variational Approximation

> Basic idea: replace intractable $p$ with tractable $q$
> Old Problem:
> We cannot come up with a good, single, $q$ to approximate $p$
> Key Idea:
> Consider a family of distributions $Q=\{q(\cdot \mid \phi): \phi \in \Phi\}$ with 'variational parameters' $\phi$
> Choose a member $q$ from Q that is closest to $p$
> New problems:
> How do we choose Q ?
> How do we measure 'closeness' between $q$ and $p$ ?

## Recall EM and Jensen's Inequality

> Jensen gives us:

$$
\begin{aligned}
\log p(x \mid \theta) & =\log \int_{z} d z p(x, z \mid \theta) \\
& =\log \int_{z} d z q(z) \frac{p(X, z \mid \theta)}{q(z)} \\
& \geq \int_{z} d z q(z) \log \frac{p(X, z \mid \theta)}{q(z)} \\
& =\int_{Z} q(z) \log p(x, z \mid \theta)-\int_{z} q(z) \log q(z) \\
& =\underbrace{}_{\mathcal{E \sim q}}\{\log p(x, z \mid \theta)\}-\boldsymbol{E}_{z \sim q}\{\log q(z)\}
\end{aligned}
$$

> Where we chose $q(z)=p(z \mid x, \theta)$ to turn the inequality into an equality. But we can also compute:

$$
\log p(x \mid \theta)=\llcorner+K L(q(z) \| p(z \mid x, \theta) \mid
$$

for any choice of $q$

## Variational EM

> Parameterize $q$ and directly optimize:

$$
\log p(x \mid \theta)=\boldsymbol{E}_{z \sim q}\{\log p(x, z \mid \theta)\}-\boldsymbol{E}_{z \sim q}\{\log q(z)\}+K L(q(z \mid \breve{\theta}) \| p(z \mid x, \theta))
$$

> Iterate:
> V-Step: Compute variational parameters $\breve{\theta}$ to minimize KL
> E-Step: Compute expectations of hidden variables wrt $q(\breve{\theta})$
> M-Step: Maximize $\angle$ wrt true parameters $\theta$
> Art: inventing $q$ so that this is all tractable

## Variational EM in Pictures



## Variational: Choosing Q




$$
\begin{aligned}
& \pi \mid \breve{a}, \breve{b} \sim \operatorname{Beta}(\breve{a}, \breve{b}) \\
& z \mid \breve{\pi} \sim \operatorname{Bin}(\breve{\pi}) \\
& q(\pi, z \mid \breve{a}, \breve{b}, \breve{\pi})= \\
& \frac{\Gamma(\breve{a}+\breve{b})}{\Gamma(\breve{a}) \Gamma(\breve{b})} \prod_{m, n} \prod_{i} \pi_{m n i}^{\breve{a}_{\text {a }}-1} \breve{\pi}_{m n}^{z_{m i n}}
\end{aligned}
$$

$$
p(w, \pi, z \mid \rho, a, b)=
$$

$$
\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \pi^{a-1}(1-\pi)^{b-1}
$$

$$
\prod_{m, n} \pi^{z_{m m}}(1-\pi)^{1-z_{m m}} \prod_{i} \prod_{v}\left[\beta_{v}^{i}\right]^{z_{m i n}}
$$

## VEM in our Model

> Iterate:
> Optimize variational parameters:

$$
\begin{aligned}
& \breve{\pi}_{m n i} \propto \exp \left[\Xi_{i}+\omega_{m n i}\right] \\
& \breve{a}_{i}=a_{i}+\sum_{m, n} \breve{\pi}_{m n i} \\
& \Xi_{i}=\Psi\left(\breve{a}_{i}\right)-\Psi\left(\sum_{i} \breve{a}_{i}\right) \quad \omega_{m n i}=\sum_{j} w_{m n j} \log \beta_{j}^{i}
\end{aligned}
$$

> Optimize model parameters:

$$
\begin{aligned}
& \beta_{V}^{i} \propto \sum_{m, n} \breve{\pi}_{m n i} W_{m n v} \\
& a, b \sim \text { generic optimization techniques }
\end{aligned}
$$

## Variational EM Summed Up

$>$ Steps:
> Write down conditional likelihood and choose an approximating distribution (eg, by factoring everything) with variational parameters
> Iterate between optimizing the VPs
 and model parameters
$>$ Pros:
> Efficient, deterministic, often quite accurate
> Cons:
> At it's heart, still a mode-based technique
> Often underestimates the spread of a distribution
> Approximation is local

## Tutorial Outline

> Introduction to the Bayesian Paradigm
> Background Material
> Graphical Models
> Maximum Likelihood
> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions
> Summing
> Monte Carlo
> Markov Chain Monte Carlo
> Survey of Popular Models
> Pointers to Literature
> Conclusions

## Message Passing Algorithms

> Two major choices:
> What approximating distribution should we use?
$>$ What cost should we minimize?


$$
D_{a}(p \| q)=\frac{1}{\beta(1-\beta)} \int d x \beta p+(1-\beta) q-p^{\beta} q^{\beta} \quad \beta=\frac{1}{2}(1+a)
$$

$$
K L(p \| q)=D_{1}(p \| q) \quad K L(q \| p)=D_{-1}(p \| q)
$$

## Empirical Evaluation of Methods

> Query-focused summarization model:


$$
\begin{aligned}
w_{q n}^{Q} & \sim \operatorname{Mult}\left(\beta_{q}^{Q}\right) \\
\pi_{m s} & \sim \operatorname{Dir}(a) \\
z_{m s n} & \sim \operatorname{Mult}\left(\pi_{m s}\right) \\
w_{m s n} & \sim \operatorname{Mult}\left(\beta^{G}\right)^{-z_{m o n}}
\end{aligned}
$$

$$
\prod_{m} \operatorname{Mult}\left(\beta_{m}^{D}\right)^{z_{\operatorname{man}}(m+1)}
$$

$$
\prod_{q}^{m} \operatorname{Mult}\left(\beta_{q}^{Q}\right)^{z_{\operatorname{mom}}(q+M+1)}
$$

## Evaluation Data

> All TREC data
> Queries 51-350 and 401-450 (35k words)
> All relevant documents ( 43 k docs, 2.1 m sents, 65.8 m words)
> Asked 7 annotators to select up to 4 sentences for an extract
> Each annotated 25 queries ( 166 total)
> Systems produce ranked lists of sentences
> Compared on mean average precision, mean reciprocal rank and precision at 2
$>$ Computation Time:
> MAP-EM (2 hours)
> Summing (2 days)
> Monte Carlo (2 days)
> MCMC ( 1 day)
> Laplace (5 hours)
> Variational (4 hours)
> EP (2.5 hours)

## Evaluation Results

Mean Average Precision


## Tutorial Outline

> Introduction to the Bayesian Paradigm
> Background Material
> Graphical Models
> Maximum Likelihood
> Expectation Maximization
> Priors, priors, priors (subjective, conjugate, reference, etc.)
> Inference Problem and Solutions
> Summing
> Monte Carlo
> Markov Chain Monte Carlo
> Survey of Popular Models
> Pointers to Literature
> Conclusions
> Laplace Approximation
> Variational Approximation
> Message Passing...

## Latent Dirichlet Allocation

> Unigram model of documents
[Blei, Ng + Jordan, JMLR 03]
> Each document is a mixture over topics
> Each topic is a mixture over words
> Generative model for each document (M total):
> Choose a single topic mixture: $\theta \sim \operatorname{Dir}(\alpha)$
$>$ For each word (N total):
> Choose a topic for this word: $\mathrm{z} \sim \operatorname{Mult}(\theta)$
> Choose the word itself: $w \sim \operatorname{Mult}\left(\beta^{z}\right)$


## LDA: Geometric Interpretation



## LDA: Inference

[Blei, Ng + Jordan, JMLR 03]


$$
\begin{aligned}
P(D)= & \int_{\Delta_{V}} d P(\beta) \int_{\mathbb{R}^{+}} d P(\alpha) \prod_{m=1}^{M} \int_{\Delta_{K}} d \theta\left[\frac{\Gamma(K \alpha)}{\Gamma(\alpha)^{K}} \prod_{j=1}^{K} \theta_{k}^{\alpha-1}\right] \\
& \prod_{n=1}^{N} \sum_{z_{m \times n}=1}^{K} \prod_{i=1}^{K} \prod_{j=1}^{K} \prod_{j i}^{K} \beta_{j i}^{\mathbf{1}\left[w_{m n}=i\right] \mathbf{1}\left[z_{m n}=j\right]}
\end{aligned}
$$

Desired: either $\boldsymbol{\beta}$ s or $\boldsymbol{z s}$

## LDA: Naïve Gibbs Sampler

[Griffiths + Tenenbaum, CogSci 03]

$$
\begin{aligned}
& \alpha \sim P A \underbrace{}_{N} \\
& \alpha \sim P(\alpha) \prod_{m} \operatorname{Dir}\left(\theta_{m} \mid \alpha\right) \\
& \beta_{j} \sim P\left(\beta_{j}\right) \prod_{m n} \operatorname{Mult}\left(w_{m n} \mid \beta_{j}\right) 1\left[z_{m n}=j\right] \\
& \theta_{m} \sim \operatorname{Dir}\left(\theta_{m} \mid \alpha\right) \prod_{n} \operatorname{Mult}\left(z_{m n} \mid \theta_{m}\right) \\
& z_{m n} \sim \operatorname{Mult}\left(z_{m n} \mid \theta_{m}\right) \operatorname{Mult}\left(w_{m n} \mid \beta_{z_{m n}}\right)
\end{aligned}
$$

Can collapse this step!

## LDA Results

| "Arts" | "Budgets" | "Children" | "Education" |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| NEW | MILLION | CHILDREN | SCHOOL |
| FILM | TAX | WOMEN | STUDENTS |
| SHOW | PROGRAM | PEOPLE | SCHOOLS |
| MUSIC | BUDGET | CHILD | EDUCATION |
| MOVIE | BILLION | YEARS | TEACHERS |
| PLAY | FEDERAL | FAMILIES | HIGH |
| MUSICAL | YEAR | WORK | PUBLIC |
| BEST | SPENDING | PARENTS | TEACHER |
| ACTOR | NEW | SAYS | BENNETT |
| FIRST | STATE | FAMILY | MANIGAT |
| YORK | PLAN | WELFARE | NAMPHY |
| OPERA | MONEY | MEN | STATE |
| THEATER | PROGRAMS | PERCENT | PRESIDENT |
| ACTRESS | GOVERNMENT | CARE | ELEMENTARY |
| LOVE | CONGRESS | LIFE | HAITI |

The William Randolph Hearst Foundation will give $\$ 1.25$ million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical rescarch, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be $\$ 200,000$ for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive $\$ 400,000$ each. The Juilliard School, where music and the performing arts are taught, will get $\$ 250,000$. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual anmual $\$ 100,000$ donation, too.

## Integrating Topics and Syntax


[Griffiths, Steyvers, Blei +
Tenenbaum, NIPS 2004]
For each document M :
Choose a topic mixture
For each word N :
Choose topic $z$
Choose class $s$
Choose $w$ from:
$\beta_{\mathrm{Z}}$ if $\mathrm{s}=0$
$\zeta_{s}$ otherwise

```
network used for images
image obtained with kernel
output described with objects
neural network trained with svm images
```


# LDA versus Topics+Syntax 

[Griffiths, Steyvers, Blei +
Tenenbaum, NIPS 2004]


## Matching Words and Pictures


[Barnard. Duygulu, de Freitas, Forsyth, Blei + Jordan, JMLR 2003]

1. People, tree
2. Sky, jet
3. Sky, clouds
4. Sky, mountain
5. Plane, jet
6. Plane, jet

Draw a topic mixture $\theta \sim \operatorname{Dir}(\alpha)$
For each image region $P$
Draw a topic $z \sim \operatorname{Mult}(\theta)$
Draw the region $r \sim \operatorname{Gaussian}\left(\mu, \sigma^{2}\right)$
For each word $N$
Draw a image region $y \sim \operatorname{Unif}(1 . . \mathrm{P})$
Draw the word $w \sim \operatorname{Mult}\left(\beta_{\mathrm{zy}}\right)$

## Matching Words and Pictures

[Barnard. Duygulu, de Freitas, Forsyth, Blei + Jordan, JMLR 2003]


True caption market people
Corr-LDA
people market pattern textile display


True caption
birds tree
Corr-LDA
birds nest leaves branch tree


True caption scotland water
Corr-LDA
scotland water flowers hills tree


True caption
fish reefs water
Corr-LDA
fish water ocean tree coral


True caption sky tree water Corr-LDA tree water sky people buildings


True caption clouds jet plane
Corr-LDA
sky plane jet mountain clouds

## Conclusions

> Bayesian methods provide efficient, effective models
> Graphical models are an easy language
> Plug and play of Multinomial/Dirichlet/Beta/Gamma leads to models that admit efficient Gibbs sampling methods
> For faster inference, the variational approximation is effective
$>$ Bayesian models of text problems is largely unexplored
> Many topics not discussed:
> Alternative inference techniques (belief/expectation propagation)
> Classifiers/discriminative models (Gaussian Processes $\approx$ SVMs)
> Infinite models (Dirichlet Processes, Chinese Restaurant Processes)

## Bayes in Action (NLP/IR/Text)

Blei, Ng + Jordan, Latent Dirichlet allocation, JMLR03.
Barnard, Duygulu, de Freitas, Forsyth, Blei + Jordan. Matching words and pictures. JMLR03.

Daumé III + Marcu, Bayesian Query-Focused Summarization, ACL06.
Griffiths, Steyvers, Blei, Tenenbaum, Integrating topics and syntax. NIPS04.
McCallum, Corrada-Emmanuel + Wang, Topic and Role Discovery in Social Networks. IJCAI05.
Zhang, Callan + Minka, Novelty and Redundancy Detection in Adaptive Filtering. SIGIR02.

## For Further Information (Books)

James O. Berger, Statistical Decision Theory and Bayesian Analysis. Springer, 1985.

David MacKay, Information Theory, Inference and Learning Algorithms. Cambridge University Press, 2003.

Larry Wasserman, All of Statistics: A Concise Course in Statistical Inference. Springer, 2003.

Christopher Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

## For Further Information (Tutorials)

Andreiu, de Freitas, Doucet + Jordan, An Introduction to MCMC for Machine Learning. ML 2003

Wainwright + Jordan, Graphical models, exponential families and variational inference. UCB Stat TR\#649, 2003.

Murphy, A Brief Introduction to Graphical Models and Bayesian Networks. www.cs.ubc.ca/~murphyk/Bayes/bayes.html

Minka, Using lower bounds to approximate integrals. 2003. www.research.microsoft.com/~minka/papers/rem.html.

## Other References

Lawrence, Fast sparse Gaussian process methods: the informative vector machine. NIPS 2003.

Minka, Expectation Propagation for Approximate Bayesian Inference. UAI 2001.

Minka, Divergence Measures and Message Passing. AI-Stats 2005.

Neal, Markov chain sampling methods for Dirichlet process mixture models, TR. 9815, Dept. of Statistics, University of Toronto.

http://bayes.hal3.name/ http://nlpers.blogspot.com

