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Who Should Be Here?

“My EM converges to garbage!”

“I want to integrate domain knowledge.”

“My independence assumptions 
don't factor nicely!”

“Bayesian techniques are
worthless...
too hard...
too slow...”
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Tutorial Goals

Understand when to be Bayesian

Know the natural prior distributions

Implement a Gibbs sampler for LDA

Draw complex graphical models

Read NIPS/UAI/etc. papers
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Empirical Motivation
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Model for Q-F Summarization

� Suppose a document D is relevant to two queries, Q1 and Q2

� Mark each sentence with the
degree to which it is about:

� Q1

� Q2

� D, but not Q1 nor Q2

� General English

� Now, mark each word in that
sentence with an absolute
judgment about where it came from

� Sentences which are more like Q1 are
more likely to have words from Q1

� General English words are likely to be
consistent across the whole corpus

� Document-specific words are likely to
be consistent across the whole document

� Query-specific words are likely to be
consistent across all documents relevant
to a given query

Iraq’s National Assembly approved a 
list of Cabinet members for a 
transitional government Thursday, 
three months after national elections.

Three ministries – Defense, Oil and 
Electricity – were filled with 
temporary appointments because of a 
last minute failure to reach a 
compromise.

Prime minister Ibrahim al-Jaafari 
assumed his post with the creation of 
his government

The approval of the Cabinet 
represents the end of a major political 
impasse in the country.

On Wednesday, al-Jaafari told a news 
conference that he had submitted his 
proposal Cabinet to President Jalal 
Talabani, who had to approve the 
names before the transitional National 
Assembly voted on them.

Al-Jaafari’s announcement came a 
short time after gunment shot and 
killed an assembly member on her 
doorsep in Baghdad…
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Tutorial Outline

� Introduction to the Bayesian Paradigm
� Background Material
� Graphical Models
� Maximum Likelihood
� Expectation Maximization

� Priors, priors, priors (subjective, conjugate, reference, etc.)
� Inference Problem and Solutions
� Summing
� Monte Carlo
� Markov Chain Monte Carlo

� Survey of Popular Models
� Pointers to Literature
� Conclusions

� Laplace Approximation
� Variational Approximation
� Message Passing...
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A Brief Refresher

Distributions

Binomial Binary

Multinomial K classes

Bin �x �N,�� � �n �1���N�n

Mult ��x ���� �	�k

xk

Expectations:

E x~ p [ f � x� ] =



x�X
p � x� f � x � X

�
X

dx p � x � f � x � X

is discrete

is continuous

Probability Calculus:

p�x1 : N �=	
n

p�xn � x1: n�1� p�a �b�=
p �a� p�b � a�

p�b�
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The Bayesian Paradigm

� Every statistical problem has data and parameters
� Find a probability distribution of the parameters given the 

data using Bayes' Rule:

� Use the posterior to:
� Predict unseen data (machine learning)
� Reach scientific conclusions (statistics)
� Make optimal decisions (Bayesian decision theory)

Posterior
LikelihoodPrior

Marginal

P�params�data� =
P�params�P �data �params�

P�data�
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Models, Parameters and Data

� Model = Our explanation of the world (data)
� Examples: maximum entropy models, IBM model 1, trigram LM

� Parameters = All unknown aspects of the model
� Examples: “lambda” parameters, T-table, p(ate | the man)

� Data = All observed variables

� Inference problems:
� Estimate parameters (or their distribution)
� Estimate missing data (prediction)
� Find a good model
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What is a Good Model?

� We can consider models by looking at the probability that 
they generate our data set (the marginal likelihood of the 
data):

P
(d

at
a 

| 
m
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el

)

all possible data sets

Model 1

Model 2

Model 3 Current data set
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Tutorial Outline

� Introduction to the Bayesian Paradigm
� Background Material
� Graphical Models
� Maximum Likelihood
� Expectation Maximization

� Priors, priors, priors (subjective, conjugate, reference, etc.)
� Inference Problem and Solutions
� Summing
� Monte Carlo
� Markov Chain Monte Carlo

� Survey of Popular Models
� Pointers to Literature
� Conclusions

� Laplace Approximation
� Variational Approximation
� Message Passing...
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Graphical Models

� Convenient notation for representing probability distributions 
and conditional independence assumptions

X A observed random variable

X A unobserved/hidden random variable

X A observed/known parameter

X A unobserved/unknown parameter

A submodel replicated N times
N

An indication of conditional dependence
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Example 1: Naïve Bayes

X

Y

N




�

Feature parameters

Data vector

Class label

Class 'prior' probability

X | �,Y ~ Binomial(X | �  )
Y | 
 ~ Multinomial(
)

Y

� For each example n:
� Choose a class Y by:

� For each feature f:
� Choose X by:

F
p �Y=y � 
� � 
y

p �X f ��
Y � � �f

Y
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Example 1: Naïve Bayes

X

Y

N




�

F

p �D �� ,
�
=	

n
p� yn �
�	

f
p� xnf � yn ,��

=	
n



yn �1�
�
1�yn	

f
	

v
�yn fv

xnfv


 if yn = 1
1-
 if yn = 0

�yfv

     if xnfv = 1

�yfv = probability that feature f takes
value v if the class is y
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Example 2: Maximum Entropy

�

Data vector

Class label

Feature parameters

� For each example n:
� Choose a class Y by:

p�Y=y � X ,�� �
exp [
 f

X f � f ]

X

Y

N

F
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Example 3: Hidden Markov Models

X

Y




�

X

Y

X

Y

X

Y

X

Y

Task: Write out
   corresponding
   probability
   distribution.
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Example for Summarization

� Consider a stupid summarization model:
� Each word in a document is drawn independently
� Each word is draw either from a general English model, or a document 

specific model
� We don't know which words are drawn from which

w

z
N




� � 

M

G D

Indicator
variable

p �w � 
 ,�G ,�D�=

	
m
	

n


zmn

p� zmn�
�

p�w��G�
zmn

p�w��m
D
�
1�zmn
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Fun with Graphical Models

� Easy to propose extensions to the model: add sentences!
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Fun with Graphical Models

� Add queries!
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Tutorial Outline

� Introduction to the Bayesian Paradigm
� Background Material
� Graphical Models
� Maximum Likelihood
� Expectation Maximization

� Priors, priors, priors (subjective, conjugate, reference, etc.)
� Inference Problem and Solutions
� Summing
� Monte Carlo
� Markov Chain Monte Carlo

� Survey of Popular Models
� Pointers to Literature
� Conclusions

� Laplace Approximation
� Variational Approximation
� Message Passing...
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Maximum Likelihood Estimators (MLE)

X

Y
N




�

� Take a parameterized model and some data
� Find the parameters that maximize the likelihood

of that data (i.e., the 'probability' of the parameters
given the data):

L�� ,
 � X1:N , Y1:N�=	
n=1

N

�	
k=1

K


k

Ynk�1�
k �
1�Ynk �

�	
f=1

F

��f

Yn �
Xnf �1��f

Yn �
1�Xnf �

l �� ,
�=

n



k

�Y nk log
k��1�Y nk � log �1�
k��

�

n



f

�X nf log� f
Y n��1�X nf � log �1�� f

Y n��

� l
�


=

n



k [ Ynk


k

�
1�Ynk

1�
k
] � l

��
k = 


n:Y n=k



f [ Xnf

� f
k �

1�Xnf

1�� f
k ]

F
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Tutorial Outline

� Introduction to the Bayesian Paradigm
� Background Material
� Graphical Models
� Maximum Likelihood
� Expectation Maximization

� Priors, priors, priors (subjective, conjugate, reference, etc.)
� Inference Problem and Solutions
� Summing
� Monte Carlo
� Markov Chain Monte Carlo

� Survey of Popular Models
� Pointers to Literature
� Conclusions

� Laplace Approximation
� Variational Approximation
� Message Passing...
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MLE with hidden variables

� Consider a stupid summarization model:
� Each word in a document is drawn independently
� Each word is draw either from a general English model, or a document 

specific model
� We don't know which words are drawn from which

� Compute log likelihood:

� Uh oh!  Logs can't go inside sums!

w

z
N




� � 

M

G D

Indicator
variable

p�w � 
 ,�G ,�D �=	
m
	

n


zmn

p � zmn�
� p�w��
G �

zmn p�w��m
D �

1�zmn

l�
 ,��w�=

m



n

log

zmn
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Expectation Maximization

� We would like to move the log inside the sum, but can we?
� Jensen's Inequality to the rescue:

� For any distribution Q (with the same support)
� How should we choose Q?

logp�x ��� = log�Z
dz p �x ,z ���

= log�Z
dz q �z�

p�X ,z���

q �z�

� �Z
dz q �z� log

p�X ,z���

q �z�

= �Z
q �z�logp�x ,z�����Z

q �z� logq�z�

= Ez~q {logp�x ,z���}�E z~q {logq �z�}
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Expectation Maximization

� If we set                             then the lower bound becomes an 
equality:

� So, when computing                               , the expectation 
should be taken with respect to the true posterior

q �z�= p�z� x ,��

�Z
dz q �z� log

p�x ,z � ��

q�z�
= �Z

dz p�x �z,�� log
p�x , z� ��

p�x �z ,��

= �Z
dz p�x �z,�� log

p�z � x ,�� p�x � ��

p�x �z,��

= �Z
dz p�x �z,�� logp �x � ��

= logp �x � �� �Z
dz p�x �z ,��

= logp �x � ��

E z~q {log p�x ,z ���}
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EM in Practice

� Recall, we wanted to estimate parameters for:

� So we replace the hidden variables with their expectations:

� All we need to do is calculate the expectations:

� And now the computation proceeds as in the no-hidden-
variable setting

l�� � w � � 

m



n

E {zmn }logp�w��G���1�E {zmn }� logp�w��m
D �

E {zmn } � p�zmn=1 � 
�p�w � �G�

p �w � 
 ,�
G
,�

D
� = 	

m
	

n


zmn

p�zmn�
�p�w��
G
�
zmn p�w��m

D
�
1�zmn

= 	
m
	

n

Ezmn~

{p �w��G�

zmn p�w��m
D �

1�zmn}
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EM Summed Up

� Initialize parameters however you desire
� Repeat:
� E-STEP:

Compute expectations of hidden variables under
the current parameter settings

� M-STEP:
Optimize parameters given those expectation

� This procedure is guaranteed to:
� Converge to a (local) maximum
� Monotonically increase the incomplete log-likelihood
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EM Graphically

x0 x1 x2
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EM on our simple model

� Suppose we have three words: {A, B, C}
� Document 1 = [A B], Document 2 = [A C]
� Initialized uniformly
� E-step:

� M-step:

E {zmn} � p�zmn=1 � 
�p�w � �G
�

E{z11} =

�A

G


�A
G��1�
��1A

D
=

0.5�1/3
0.5�1 /3�0.5�1/3

= 0.5

E {z12} = E{z21} = E{z22} = 0.5

�A
G =

1
Z [ E {z11}�E {z21}] =

1
2
�B

G =
1
Z [ E {z12}] =

1
4

�C
G =

1
Z [ E {z22}] =

1
4

�1A
D =

1
Z [1�E {z11}] =

1
2

�1B
D =

1
Z [1�E {z12}] =

1
2
�1C

G = 0

�2A
D =

1
Z [1�E {z21}] =

1
2

�2B
D = 0 �2C

G =
1
Z [1�E {z22}] =

1
2


=
E {z11}�E {z21}

E {z11}�E {z21}�E {z12}�E {z22}
=

1
2

w

z
N




� � 

M

G D
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EM on our simple model

� Suppose we have three words: {A, B, C}
� Document 1 = [A B], Document 2 = [A C]
� Initialized uniformly

Complete log likelihood

Incomplete log likelihood

log 


log �  (A)

log �  (A)G

D
1

Task: Implement
   EM for this
   model + data
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Problems with Maximum Likelihood

Powerful model � Worthless results

Theoretically unjustified
(some would argue...)

Computationally Expensive
(all that cross-validation...)

(due to overfitting...)

parameters

lik
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ih
oo

d

Background knowledge is 0/1
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Tutorial Outline

� Introduction to the Bayesian Paradigm
� Background Material
� Graphical Models
� Maximum Likelihood
� Expectation Maximization

� Priors, priors, priors (subjective, conjugate, reference, etc.)
� Inference Problem and Solutions
� Summing
� Monte Carlo
� Markov Chain Monte Carlo

� Survey of Popular Models
� Pointers to Literature
� Conclusions

� Laplace Approximation
� Variational Approximation
� Message Passing...
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What is a Prior?

� Recall Bayes' Rule:

� A prior is a specification of our beliefs about the values 
parameters can take, before seeing any data

Posterior

LikelihoodPrior

Marginal

P�� �D�=
P ��� P�D���

�
�

d�P��� P �D� ��
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How Does the Posterior Behave?

Take sequence of data x1, ..., xN...
p ��� = just the prior

p��� x1� =
p ��� p �x1 ���

�d � p ��� p �x1���

p ��� x1, x2� =
p ���x1� p �x2���

�d � p��� x1� p �x2 ���

�

p��� x1: N � =
p ���x1: N�1� p �xN ���

�d � p ��� x1 : N�1� p�xN ���

=

p ���	
n

p �xn ���

� d � p���	
n

p �xn ���
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Binomial Example
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Specifying Priors

� A prior is a map     that:
� Assigns to every setting of parameters a real value
� Integrates to 1 over the parameter space

� Such a beast can be difficult to describe!  Tools:
� When the parameters are discrete, we can set them by hand
� Otherwise, we will often choose a parametric prior

                         and deal with the hyper-parameters
� Or choose a set of priors and integrate over them (robust 

Bayes)
� ...
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Empirical Bayes

� Specify a class of priors (typically a functional form):

� Estimate the prior by maximizing the marginal likelihood:

� = {
 : 
���= g ����� }

�
 = max

��

p �x �
�

= max
��A
�� d� 
�����p�x ���
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Conjugate (convenient) Priors

� Recall:

� Given a distribution

� And a prior

� The prior is conjugate if:

p�x ���


�����

p���� , x�=

�����p�x ���

��F
������p�x ���
= 
�� � ���

Se
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lso
: B

er[
4.

2.
2]

, M
K

[2
3]

p��� x1: N �=

p���	
n

p�xn���

� d � p���	
n

p� xn ���
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Summary of Distributions

Distribution Domain Picture Parametric Form

Binomial Binary

Multinomial K classes

Beta [0,1]

Gamma [0,�)

Dirichlet Simplex

Gaussian Reals

Bin �x �N,�� � �n �1���N�n

Beta���� ,�� � ���1 �1�����1

Mult ��x ���� �	�k

xk

Nor �x �� ,�2� � exp ��x���2/2�2 �

Gam �x �a ,b� � x�a�1
exp��bx�

Dir ���� ����	�k

�k�1
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Binomial and Beta Distributions

� Binomial distribution models flips of coins (domain={0,1}):
� Probability that a coin, bias �, flipped N times will come up x heads
� Parameters:
� Distribution:
� Moments: 

� Beta distribution models nothing (we care about) (domain=[0,1]):
� Parameters:

� Distribution:

� Moments:

� Beta is conjugate to binomial:
� Posterior parameters:
� Marginal distribution:

N��� , ��[0,1]

Bin �x �N,��= �Nx ��n �1���N�n

�=N�, var=N��1���N��

���� , ����

Beta �� �� ,��=
� �����

� ���� ���
�
��1
�1���

��1

�=
�

���
, var =

��

�����2 �����1�

�� = ��x , ��= ��N�x

p �x �� ,��=
������

� ���� ��� �Nx �
� ���x �� ���N�x�

� �����N�
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Beta Distribution Examples

�
=0

.5
�

=1
�

=4

�=0.5 �=1 �=4

Beta���� ,��=
� �����

� ���� ���
�
��1
�1���

��1
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Multinomial Distribution

� A distribution over counts of K>1 discrete events (words)
� Domain:

� Parameters:

� Distribution:

� Moments:

Mult ��x ����=
��
 xk�1 �
	 ��xk�1�

	�k

xk

��1, ,�K ! � "K = {�1:K : �k�0,

k

�k=1}

(N,0,0) (0,N,0)

(0,0,N)

�x1, , xK ! � �
K

��1, ,�K ! � "K = {�1:K : �k�0,

k

�k=1}



Bayesian Techniques for HLTSlide 46

Hal Daumé III (me@hal3.name)00:02

bayes.hal3.name

Dirichlet Distribution

� A distribution over a probability simplex
� Domain:

� Parameters:

� Distribution:

� Moments:

��1, ,�K ! � δK

��1 , ,�K ! � ��
��K , ��=


k

�k

Dir ���� ���=
�� ���

	k
� ��k�
	k

�k

�k�1

�k =
�k

��
, vark =

�k � ����k�

� ���
2
�1� ���

(N,0,0) (0,N,0)

(0,0,N)

(N,0,0) (0,N,0)

(0,0,N)

[1,1,2] [5,5,10]
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Multinomial/Dirichlet Pair

� Multinomial distribution:

� Dirichlet distribution:

� Posterior hyper-parameters:

� Marginal Distribution:

Mult � �x ����=
� �
 xk�1�
	 ��xk�1�

	 �k

xk

Dir ���� ���=
�� ���

	k
� ��k�
	k

�k

�k�1

� ��1 , , ��K != ��1�x1 , ,�K�xK !

p ��x � ���=
� �
 xk�1 �
	 ��xk�1�

� � ���

	 ���k�

	 ���k�xk�

� � ���
 xk �
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Gaussian/Gaussian-Gamma

� Gaussian distribution:
� Gaussian prior:
� Gamma prior:

� Posterior hyper-parameters:

� Marginal distribution:

Nor �x �� ,�2�=�2
�2�1/2exp��x��2� �
2

Nor ���m,s2�

Gam �� �a,b�=
1

ba��a�
�
�2a�1

exp�
1

b�2

a#0, b#0, domain=��

�s = � 1s2
�

1

�2 �
�1 /2

�m =

m /s2
�


i

x i /�
2

1 /s2�N /�2

�a = a�1 /2 �b = �b�1
�

1

2



i

�x i��x �
2�
�1

p �x �m,s2 ,a ,b�= StuT �m,a ,b �

Non-standard
Student's T distribution
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Gamma Distribution

Gam �x �a,b�=
ba

Γ �a�
x�a�1exp��bx �

b
=1

b
=2

b
=4

a=1 a=2 a=4

� = a /b

var = a /b2
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Conjugate Priors in Action
�(1,1) �(2,1) �(2,2) �(2,3)

�(3,3) �(4,3) �(5,3) �(6,3)

�(6,4) �(7,4) �(8,4) �(9,4)
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Tutorial Outline

� Introduction to the Bayesian Paradigm
� Background Material
� Graphical Models
� Maximum Likelihood
� Expectation Maximization

� Priors, priors, priors (subjective, conjugate, reference, etc.)
� Inference Problem and Solutions
� Summing
� Monte Carlo
� Markov Chain Monte Carlo

� Survey of Popular Models
� Pointers to Literature
� Conclusions

� Laplace Approximation
� Variational Approximation
� Message Passing...
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Recall our summarization model

w

z
N




� � 

M

G D

� The problem was that we 
don't believe that it's okay 
for 
 to go to 0 or 1

� Solution?
Put a prior on 
!

� What's a good prior?

z � 
 ~ Bin �
�

w � z,� ~ Mult ��G�z Mult ��D�1�z
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Bayesianified summarization model

w

z
N

a b,

� � 

M

G D

 � a ,b ~ Beta �a,b�

z � 
 ~ Bin �
�

w � z ,� ~ Mult ��G�zMult ��D�1�z




p�D �� ,a ,b� = �U
d


��a�b�

� �a �� �b�

a�1�1�
�b�1

	
m
	
n



z
mn
�{0,1}



z

mn �1�
�
1�z

mn

	
v

��
v
G�

z
mn

w
mnv ��

dv
D �
�1�z

mn
�w

mnv

Conjugacy does not
help because of

the hidden variables
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Interesting Inference Questions

� Predict values of unobserved data:

� Compute data likelihood:

� Maximize marginal likelihood:

� Estimate posterior:

� GENERAL FORM:

P�U �D� ��
�

d
���P �D ���P�U���

P�D� ��
�

d
���P�D���

P�� �D� ��
�

d
�����P�D���

P���D�=

���P�D���

P �D�

F =�X
dx p�x�f �x�=E x~p {f �x� }
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Tutorial Outline

� Introduction to the Bayesian Paradigm
� Background Material
� Graphical Models
� Maximum Likelihood
� Expectation Maximization

� Priors, priors, priors (subjective, conjugate, reference, etc.)
� Inference Problem and Solutions
� Summing
� Monte Carlo
� Markov Chain Monte Carlo

� Survey of Popular Models
� Pointers to Literature
� Conclusions

� Laplace Approximation
� Variational Approximation
� Message Passing...
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Integration by Summation

� Remember your 9th grade math:

F =�X
dx p�x � f �x � $

1

R


x�R

p�x � f �x �

p(x)f(x)

Se
e a

lso
: M

K
[2

4]



Bayesian Techniques for HLTSlide 57

Hal Daumé III (me@hal3.name)00:02

bayes.hal3.name

Summing in our Model

� Simply rewrite the integral as a sum:
w

z
N

a b,

� � 

M

G D


 � a ,b ~ Beta �a ,b�

z � 
 ~ Bin �
�

w � z ,� ~ Mult ��
G
�
z
Mult ��

D
�
1�z




p �D �� ,a ,b� = �U
d


��a�b�

� �a�� �b�

a�1�1�
�b�1

	
m
	

n



zmn�{0,1}



zmn �1�
�

1�zmn	
v

��v
G�

zmn wmnv��dv
D �
�1�zmn�wmnv

$


p=1

100

��a�b�

� �a�� �b�
�p/100�

a�1
�1�p /100�

b�1

	
m

	
n



zmn�{0,1}

�p/100�
zmn �1�p /100�

1�zmn

	
v

��v
G�

zmnwmnv ��dv
D �
�1�zmn�wmnv
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Integration by Summation

� Pros:
� Easy to implement
� Arbitrarily accurate

� Cons:
� Only works for doubly-

bounded regions
� Intractable for >1 or >2

dimensions
� Difficult to choose

granularity

� Idea: let's choose R differently

F =�X
dx p�x � f �x � $

1

R


x�R

p�x � f �x �

p(x)f(x)
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Tutorial Outline

� Introduction to the Bayesian Paradigm
� Background Material
� Graphical Models
� Maximum Likelihood
� Expectation Maximization

� Priors, priors, priors (subjective, conjugate, reference, etc.)
� Inference Problem and Solutions
� Summing
� Monte Carlo
� Markov Chain Monte Carlo

� Survey of Popular Models
� Pointers to Literature
� Conclusions

� Laplace Approximation
� Variational Approximation
� Message Passing...
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Monte Carlo Integration

� Uniform sampling:
� Let R be a (multi)set of points drawn uniformly at random

F =�X
dx p�x � f �x � $

1

R


x�R

p�x � f �x �

p(x)f(x)

Se
e a

lso
: M

K
[2

9]
, W

as
[2

4.
2]

, A
nd

03
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Uniform Sampling

� Pros:
� Can now work in arbitrarily

high dimensions (in theory)
� Choice is now size of R, not

the width of windows

� Cons:
� Number of samples required

to get near the mode of a spiky
distribution is huge:

� True distribution is rarely uniform

F =�X
dx p�x � f �x � $

1

R


x�R

p�x � f �x �

R ~ 2D/2

Se
e a

lso
: M

K
[2

9]
, W

as
[2

4.
2]

, A
nd

03
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Importance Sampling

� Let R be a set of points drawn from a proposal distribution q

F =�X
dx p�x � f �x � $



r

wr f �x r�



r

wr

, wr =
p�x r�

q�x r�

q(x)
p(x)f(x)

f(x)

p(x)

wr =
p�xr �

q �xr �

Se
e a

lso
: M

K
[2

9]
, W

as
[2

4.
3]

, A
nd

03
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Importance Sampling

� Pros:
� If q can be constructed similar

to p, then good samples can be had
� Can scale better than uniform

sampling (not saying much)

� Cons:
� Very sensitive to choice of q
� Hard to evaluate whether it has converged
� Still a lot of samples required:

IS: US:

F$

wr f �xr�


wr

, wr =
p�xr�

q�xr�

f(x)

p(x)

q(x) p(x)f(x)

R ~ 2D/2R ~ exp%2D
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Tutorial Outline

� Introduction to the Bayesian Paradigm
� Background Material
� Graphical Models
� Maximum Likelihood
� Expectation Maximization

� Priors, priors, priors (subjective, conjugate, reference, etc.)
� Inference Problem and Solutions
� Summing
� Monte Carlo
� Markov Chain Monte Carlo

� Survey of Popular Models
� Pointers to Literature
� Conclusions

� Laplace Approximation
� Variational Approximation
� Message Passing...
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Markov Chain Monte Carlo

� Monte Carlo methods suffer because the proposal density 
needs to be similar to the true density everywhere

� MCMC methods get around this problem by changing the 
proposal density after each sample

� General framework:
� Choose a proposal density q( | x) parameterized by location x
� Initialize state x arbitrarily
� Repeatedly sample by:
� Propose a new state x' from q(x' | x)

� Either accept or reject this new state
� If accepted, set x = x'

� New problem: samples are no longer independent!

Se
e a

lso
: M

K
[3

0]
, W

as
[2

4.
4]

, A
nd

03
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Metropolis-Hastings Sampling

� Accept new states with probability:
� Only put every Nth sample into R

min {1,
p �x '�

p �x �

q�x �x '�

q�x '� x� }

p(x)

x0 x'

p(x')

p(x0)

q(x0|x')

q(x'|x0)

q(  | x0) q(  | x')

F =�X
dx p�x �f �x� $

1

R


x�R

f �x �

Se
e a

lso
: M

K
[3

0]
, W

as
[2

4.
4]

, A
nd

03
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MH in our Model

� Invent a proposal distribution q

� Or, condition on all variables:

� Now we can compute expectations of z easily and use these 
for the M-step of EM

w

z
N

a b,

� � 

M

G D


 � a ,b ~ Beta �a,b�

z � 
 ~ Bin �
�

w � z ,� ~ Mult ��
G
�
z
Mult ��

D
�
1�z



loga ' � a ~ Nor �log �a� ,1�
logb' � b ~ Nor �log �b� ,1�

� �
'� � 
 ~ Nor �� �
� ,1�

zmn ' � z ~ Bin�0.5�

loga ' ~ Nor �log �a� ,1�
logb' ~ Nor �log �b� ,1�

� �
'� ~ Beta �
 '�a,b�	
m ,n

Bin�zmn�
 '�

zmn ' ~ Bin�zmn '�
�p�wmn �zmn ' ,��



Bayesian Techniques for HLTSlide 68

Hal Daumé III (me@hal3.name)00:02

bayes.hal3.name

Metropolis-Hastings Sampling

� Pros:
� No longer need to specify a

universally good proposal
distribution; only locally good

� Simple proposal distributions
can go far

� Cons:
� Hard to tell now far to space samples:
� Suppose we use spherical proposals and, then we need at least

where sigmas are lengths of the major density in p

� Auto-correlation to track this:

p(x)

x0 x'

p(x')
p(x0)

q(x0|x')
q(x'|x0)

q(  | x0) q(  | x')

F =�X
dx p�x �f �x� $

1

R


x�R

f �x �

N� ��max /�min�
2

rk =


i=1

N�k

�xi��x��xi�k��x �



i=1

N

�xi��x�
2
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Gibbs Sampling

� Defined only for multidimensional problems
� Useful when you can take out one variable and explicitly 

sample the rest

       p(x1 | x2)

x2

x1

                          p(x
2 | x

1)

             p(x1 | x2)

       p(x
2 | x

1)

F =�X
dxp�x�f �x� $

1

R


x�R

f �x�

Se
e a

lso
: M

K
[3

0]
, W

as
[2

4.
5]

, A
nd

03
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Gibbs Sampling

� Typically our params are:
� If, for each i, we can draw a sample from:

then we can use Gibbs sampling

� In graphical models, only depends on the Markov blanket:

       p(x1 | x2)

x2

x1
       p(x

1 | x
2)

       p(x1 | x2)       p(x
1 | x

2)

F$
1

R


x�R

f �x �

��=��1 , ,�D!

p ��i ���i�= p��i��1 , ,�i�1 ,�i�1 , ,�D�

p ��i ���i�= p��i�par ��i�� 	
j :�i�par �� j�

p �� j�par �� j��

a

b
d

e

f
p �d ���d�= p �d �a,b�p �e �d�p�f �d,c�

c
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Gibbs in our Model

� Compute conditional probabilities

� Now we can compute expectations of z easily and use these 
for the M-step of EM
� Alternatively, we could propose values for LMs in the sampling

w

z
N

a b,

� � 

M

G D


 � a ,b ~ Beta �a,b�

z � 
 ~ Bin �
�

w � z ,� ~ Mult ��
G
�
z
Mult ��

D
�
1�z



a ,b � ¬a ,b ~ Beta �
�a,b�


 � ¬
 ~ Beta �
�a,b�	
m,n

Bin�zmn�
�

zmn � ¬zmn ~ Bin �zmn �
�p�wmn �zmn ,��
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Gibbs Sampling

� Pros:
� Designed to work in high

dimensional spaces
� Terribly simple to implement
� Automatable

� Cons:
� Hard to judge convergence, can require many many samples

to get an independent one (often worse than MH)
� Only applicable when conditional distributions are 'nice'
� (Though there are ways around this)

       p(x1 | x2)

x2

x1
       p(x

1 | x
2)

       p(x1 | x2)       p(x
1 | x

2)

F$
1

R


x�R

f �x �
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Tutorial Outline

� Introduction to the Bayesian Paradigm
� Background Material
� Graphical Models
� Maximum Likelihood
� Expectation Maximization

� Priors, priors, priors (subjective, conjugate, reference, etc.)
� Inference Problem and Solutions
� Summing
� Monte Carlo
� Markov Chain Monte Carlo

� Survey of Popular Models
� Pointers to Literature
� Conclusions

� Laplace Approximation
� Variational Approximation
� Message Passing...
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Laplace (Saddlepoint) Approximation

� Idea: approximate the expectation by a quadratic (Taylor 
expansion) and use the normalizing constant from the 
resulting Gaussian distribution

F =�X
dxp�x�f �x� $ g �x0�%2
c

, c=�[�
2

�x2
lng �x �]

x=x0

p(x)f(x) = g(x)

q(x)

x0

Se
e a

lso
: M

K
[2

7]
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Laplace Approximation

� Find a mode x0 of the high-dimensional
distribution g

� Approximate ln g(x) by a Taylor
expansion around this mode:

� Compute the matrix A of second derivatives

� The exponential form is a Gaussian distribution; use the 
Gaussian normalizing constant:

F$ g �x0�%2
 /c
c=�[�2 lng �x�/�x2 ]x=x0

g(x)

q(x)

x0

lng � �x� $ lng � �x0��
1

2
��x� �x0�

T
A ��x� �x0�

A ij=�[ �2

�xi �x j

lng ��x �]
�x= �x0

F=��D dx g �x� $ g � �x0�% �2
�
D

detA

Se
e a

lso
: M

K
[2

7]
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Laplace in our Model

� Compute second derivatives:
w

z
N

a b,

� � 

M

G D


 � a ,b ~ Beta �a,b�

z � 
 ~ Bin �
�

w � z ,� ~ Mult ��
G
�
z
Mult ��

D
�
1�z
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m,n
[ zmn
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�1�zmn�

�1�
� ]
�

2
logg

�
2
= �

�a�1�


2
�
�b�1�

�1�
�2
�


m, n [ zmn


2
�
�1�zmn�

�1�
�2 ]

g �
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a�1�

m,n
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b�1�

m,n

�1�zmn �

F =�X
dxp�x�f �x� $ g �x0�%2
c

, c=�[�
2

�x2
lng �x �]

x=x0
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Laplace Approximation

� Pros:
� Deterministic
� Efficient if A is of a suitable form

(i.e., diagonal or block-diagonal)
� Can apply transformations to make

quadratic approximation more reasonable

� Cons:
� Poor fit for multimodal distributions
� Often, det A cannot be found efficiently

F $ g �x0 �%2
 /c
c=�[�2 lng �x �/�x2 ]x=x

0

g(x)

q(x)

x0
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Tutorial Outline

� Introduction to the Bayesian Paradigm
� Background Material
� Graphical Models
� Maximum Likelihood
� Expectation Maximization

� Priors, priors, priors (subjective, conjugate, reference, etc.)
� Inference Problem and Solutions
� Summing
� Monte Carlo
� Markov Chain Monte Carlo

� Survey of Popular Models
� Pointers to Literature
� Conclusions

� Laplace Approximation
� Variational Approximation
� Message Passing...
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Variational Approximation

� Basic idea: replace intractable p with tractable q
� Old Problem:
� We cannot come up with a good, single, q to approximate p

� Key Idea:
� Consider a family of distributions

with 'variational parameters'
� Choose a member q from Q that is closest to p

� New problems:
� How do we choose Q?
� How do we measure 'closeness' between q and p?

Q = {q �&�'�:'�( }
'

Se
e a

lso
: M

K
[3

3]
, W

ai
n0

3,
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Recall EM and Jensen's Inequality

� Jensen gives us:

� Where we chose                            to turn the inequality into 
an equality.  But we can also compute:

for any choice of q

q �z�= p�z �x ,��

logp�x ��� = log�Z
dz p �x ,z ���

= log�Z
dz q �z�

p �X,z ���

q �z�

� �Z
dz q�z �log

p �X,z ���

q �z�

= �Z
q �z�logp �x ,z �����Z

q �z �logq �z �

= E z~q {logp�x ,z � ��}�E z~q {logq �z �}

logp�x ���= L �KL �q �z ���p�z �x ,���

L �x ���
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Variational EM

� Parameterize q and directly optimize:

� Iterate:
� V-Step: Compute variational parameters       to minimize KL

� E-Step: Compute expectations of hidden variables wrt

� M-Step: Maximize     wrt true parameters

� Art: inventing q so that this is all tractable

log p�x ���=Ez~q {log p�x ,z ���}�E z~q {logq �z�}�KL �q�z � )����p �z�x ,���

)�

q �)��

�L
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Variational EM in Pictures

p(x)f(x) = g(x)

q � x � )��

x0 x1
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Variational: Choosing Q

� Mixture model:

p �w,
 ,z �* ,a ,b� =
��a�b�

� �a�� �b�

a�1�1�
�b�1

	
m,n



znm �1�
�

1�znm	
i
	

v
[�v

i ]
zmni


 � )a , )b ~ Beta � )a , )b �

z � )
 ~ Bin� )
�

z
M,N

)
)a , )b 


q �
 ,z � )a, )b, )
� =

� �)a�)b�

� �)a�� � )b�
	
m,n
	

i


mni

)ai�1
)
mn

znmi

Key:    and z are
now not tied in the

q distribution!




w

z
N

a b,

� � 

M

G D
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VEM in our Model

� Iterate:
� Optimize variational parameters:

� Optimize model parameters:

w

z
N

a b,

� � 

M

G D





 � a ,b ~ Beta �a,b�

z � 
 ~ Bin �
�

w � z ,� ~ Mult ��
G
�
z
Mult ��

D
�
1�z

+i = ,� )ai��,�

i

)ai� -mni =

j

wmnj log �j
i

)
mni � exp [+ i�-mni ]
)ai = ai � 


m ,n

)
mni

�v
i � 


m,n

)
mni wmnv

a,b ~ generic optimization techniques
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Variational EM Summed Up

� Steps:
� Write down conditional likelihood and

choose an approximating distribution
(eg, by factoring everything) with 
variational parameters

� Iterate between optimizing the VPs
and model parameters

� Pros:
� Efficient, deterministic, often quite accurate

� Cons:
� At it's heart, still a mode-based technique
� Often underestimates the spread of a distribution
� Approximation is local
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Tutorial Outline

� Introduction to the Bayesian Paradigm
� Background Material
� Graphical Models
� Maximum Likelihood
� Expectation Maximization

� Priors, priors, priors (subjective, conjugate, reference, etc.)
� Inference Problem and Solutions
� Summing
� Monte Carlo
� Markov Chain Monte Carlo

� Survey of Popular Models
� Pointers to Literature
� Conclusions

� Laplace Approximation
� Variational Approximation
� Message Passing...
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Message Passing Algorithms

� Two major choices:
� What approximating distribution should we use?
� What cost should we minimize?

Power EP
exp family
D   (p || q)

Struct MF
exp family
KL(q || p)

Frac BP
factorized
D   (p || q)

EP
exp family
KL(p || q)

Mean Field
factorized
KL(q || p)

Tree Rep
factorized
D     (p || q)

BP
factorized
KL(p || q)

a

a

a>1

q || p p || q

Da �p��q�=
1

��1���
�dx �p��1���q�p�q� � =

1

2
�1�a�

KL�p��q�= D1�p��q� KL �q��p�= D�1�p��q�

Se
e a

lso
: M

in
05
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Empirical Evaluation of Methods

� Query-focused summarization model:

w

z
N

a

� � 

M

G D



S

Q

w

� G

wqn
Q ~ Mult ��q

Q
�


ms ~ Dir �a�

zmsn ~ Mult �
ms�

wmsn ~ Mult ��G�
zmsn1

	
m

Mult ��m
D
�
zmsn �m�1�

	
q

Mult ��q

Q
�
z

msn
�q�M�1�

Se
e a

lso
: D

M
06
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Evaluation Data

� All TREC data
� Queries 51-350 and 401-450 (35k words)
� All relevant documents (43k docs, 2.1m sents, 65.8m words)
� Asked 7 annotators to select up to 4 sentences for an extract
� Each annotated 25 queries (166 total)

� Systems produce ranked lists of sentences
� Compared on mean average precision, mean reciprocal rank and precision at 2

� Computation Time:
� MAP-EM (2 hours)
� Summing (2 days)
� Monte Carlo (2 days)
� MCMC (1 day)
� Laplace (5 hours)
� Variational (4 hours)
� EP (2.5 hours)

Se
e a

lso
: D

M
06
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Evaluation Results
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Tutorial Outline

� Introduction to the Bayesian Paradigm
� Background Material
� Graphical Models
� Maximum Likelihood
� Expectation Maximization

� Priors, priors, priors (subjective, conjugate, reference, etc.)
� Inference Problem and Solutions
� Summing
� Monte Carlo
� Markov Chain Monte Carlo

� Survey of Popular Models
� Pointers to Literature
� Conclusions

� Laplace Approximation
� Variational Approximation
� Message Passing...
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Latent Dirichlet Allocation

� Unigram model of documents
� Each document is a mixture over topics
� Each topic is a mixture over words

� Generative model for each document (M total):
� Choose a single topic mixture: Dir ~ ( )� �

� For each word (N total):
� Choose a topic for this word: z Mult ~ ( )�

� Choose the word itself: w Mult ~ (�z)

wz
N

M
K

�� z �

[Blei, Ng + Jordan, JMLR 03]
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LDA: Geometric Interpretation

bank

river money

T1

T2

T3

Doc 1: topography
Doc 2: finance

D1

D2

[Blei, Ng + Jordan, JMLR 03]
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LDA: Inference

wz
N

M
K

�� z �

P�D�=�
"V

dP����
�
�

dP ���	
m=1

M

�
"K

dP ��m ���

	
n=1

N



zmn=1

K

	
i=1

�V�

	
j=1

K

� ji

1 [wmn=i ]1 [zmn= j]

� [� �K ��� ���K
	
j=1

K

�k

��1 ]

Desired: either �s or zs

[Blei, Ng + Jordan, JMLR 03]
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LDA: Naïve Gibbs Sampler

wz
N

M
K

�� z �

� ~ P���	
m

Dir ��m ���

� j ~ P�� j�	
mn

Mult �wmn� � j�
1 [zmn= j]

�m ~ Dir ��m � ��	
n

Mult �zmn� �m�

zmn ~ Mult �zmn ��m�Mult �wmn � �zmn
�

Can collapse
this step!

[Griffiths + Tenenbaum, CogSci 03]
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LDA Results [Blei, Ng + Jordan, JMLR 03]
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Integrating Topics and Syntax

M

K

�

�

w

z

s

w

z

s

w

z

s

w

z

s|V|
.

/

�

For each document M:
    Choose a topic mixture
    For each word N:
        Choose topic z
        Choose class s
        Choose w from:
            �z if s=0
            .s otherwise

[Griffiths, Steyvers, Blei +

  Tenenbaum, NIPS 2004]
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LDA versus Topics+Syntax
L

D
A

Sy
nt

ax
   

   
 T

op
ic

s

[Griffiths, Steyvers, Blei +

  Tenenbaum, NIPS 2004]
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1. People, tree
2. Sky, jet
3. Sky, clouds
4. Sky, mountain
5. Plane, jet
6. Plane, jet

Matching Words and Pictures

rz
P

M K

�� z

�w
N

y

�

�

For each image/caption pair M
    Draw a topic mixture � ~ Dir(�)
    For each image region P
        Draw a topic z ~ Mult(�)
        Draw the region r ~ Gaussian(�,�2)
    For each word N
        Draw a image region y ~ Unif(1..P)
        Draw the word w ~ Mult(�zy)

[Barnard. Duygulu, de 

Freitas, Forsyth, Blei + 

Jordan, JMLR 2003]
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Matching Words and Pictures
[Barnard. Duygulu, de Freitas, 

Forsyth, Blei + Jordan, JMLR 2003]
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Conclusions

� Bayesian methods provide efficient, effective models
� Graphical models are an easy language
� Plug and play of Multinomial/Dirichlet/Beta/Gamma leads to 

models that admit efficient Gibbs sampling methods
� For faster inference, the variational approximation is effective
� Bayesian models of text problems is largely unexplored

� Many topics not discussed:
� Alternative inference techniques (belief/expectation propagation)
� Classifiers/discriminative models (Gaussian Processes � SVMs)
� Infinite models (Dirichlet Processes, Chinese Restaurant Processes)
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Social Networks.  IJCAI05.
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Adaptive Filtering.  SIGIR02.
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